Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Stress-Induced Hormone Primes Brain for PTSD

Published: Wednesday, October 16, 2013
Last Updated: Wednesday, October 16, 2013
Bookmark and Share
MIT study finds that ghrelin, produced during stressful situations, primes the brain for post-traumatic stress disorder.

About a dozen years ago, scientists discovered that a hormone called ghrelin enhances appetite. Dubbed the “hunger hormone,” ghrelin was quickly targeted by drug companies seeking treatments for obesity — none of which have yet panned out.

MIT neuroscientists have now discovered that ghrelin’s role goes far beyond controlling hunger. The researchers found that ghrelin released during chronic stress makes the brain more vulnerable to traumatic events, suggesting that it may predispose people to posttraumatic stress disorder (PTSD).

Drugs that reduce ghrelin levels, originally developed to try to combat obesity, could help protect people who are at high risk for PTSD, such as soldiers serving in war, says Ki Goosens, an assistant professor of brain and cognitive sciences at MIT, and senior author of a paper describing the findings in the Oct. 15 online edition of Molecular Psychiatry.

“Perhaps we could give people who are going to be deployed into an active combat zone a ghrelin vaccine before they go, so they will have a lower incidence of PTSD. That’s exciting because right now there’s nothing given to people to prevent PTSD,” says Goosens, who is also a member of MIT’s McGovern Institute for Brain Research.

Lead author of the paper is Retsina Meyer, a recent MIT PhD recipient. Other authors are McGovern postdoc Anthony Burgos-Robles, graduate student Elizabeth Liu, and McGovern research scientist Susana Correia.

Stress and fear
Stress is a useful response to dangerous situations because it provokes action to escape or fight back. However, when stress is chronic, it can produce anxiety, depression and other mental illnesses.

At MIT, Goosens discovered that one brain structure that is especially critical for generating fear, the amygdala, has a special response to chronic stress. The amygdala produces large amounts of growth hormone during stress, a change that seems not to occur in other brain regions.

In the new paper, Goosens and her colleagues found that the release of the growth hormone in the amygdala is controlled by ghrelin, which is produced primarily in the stomach and travels throughout the body, including the brain.

Ghrelin levels are elevated by chronic stress. In humans, this might be produced by factors such as unemployment, bullying, or loss of a family member. Ghrelin stimulates the secretion of growth hormone from the brain; the effects of growth hormone from the pituitary gland in organs such as the liver and bones have been extensively studied. However, the role of growth hormone in the brain, particularly the amygdala, is not well known.

The researchers found that when rats were given either a drug to stimulate the ghrelin receptor or gene therapy to overexpress growth hormone over a prolonged period, they became much more susceptible to fear than normal rats. Fear was measured by training all of the rats to fear an innocuous, novel tone. While all rats learned to fear the tone, the rats with prolonged increased activity of the ghrelin receptor or overexpression of growth hormone were the most fearful, assessed by how long they froze after hearing the tone. Blocking the cell receptors that interact with ghrelin or growth hormone reduced fear to normal levels in chronically stressed rats.

When rats were exposed to chronic stress over a prolonged period, their circulating ghrelin and amygdalar growth hormone levels also went up, and fearful memories were encoded more strongly. This is similar to what the researchers believe happens in people who suffer from PTSD.

“When you have people with a history of stress who encounter a traumatic event, they are more likely to develop PTSD because that history of stress has altered something about their biology. They have an excessively strong memory of the traumatic event, and that is one of the things that drives their PTSD symptoms,” Goosens says.

New drugs, new targets
Over the last century, scientists have described the hypothalamic-pituitary-adrenal (HPA) axis, which produces adrenaline, cortisol (corticosterone in rats), and other hormones that stimulate “fight or flight” behavior. Since then, stress research has focused almost exclusively on the HPA axis. 

After discovering ghrelin’s role in stress, the MIT researchers suspected that ghrelin was also linked to the HPA axis. However, they were surprised to find that when the rats’ adrenal glands — the source of corticosterone, adrenaline, and noradrenaline — were removed, the animals still became overly fearful when chronically stressed. The authors also showed that repeated ghrelin-receptor stimulation did not trigger release of HPA hormones, and that blockade of the ghrelin receptor did not blunt release of HPA stress hormones. Therefore, the ghrelin-initiated stress pathway appears to act independently of the HPA axis. “That’s important because it gives us a whole new target for stress therapies,” Goosens says.

Pharmaceutical companies have developed at least a dozen possible drug compounds that interfere with ghrelin. Many of these drugs have been found safe for humans, but have not been shown to help people lose weight. The researchers believe these drugs could offer a way to vaccinate people entering stressful situations, or even to treat people who already suffer from PTSD, because ghrelin levels remain high long after the chronic stress ends.

PTSD affects about 7.7 million American adults, including soldiers and victims of crimes, accidents, or natural disasters. About 40 to 50 percent of patients recover within five years, Meyer says, but the rest never get better. 

The researchers hypothesize that the persistent elevation of ghrelin following trauma exposure could be one of the factors that maintain PTSD. “So, could you immediately reverse PTSD? Maybe not, but maybe the ghrelin could get damped down and these people could go through cognitive behavioral therapy, and over time, maybe we can reverse it,” Meyer says.

Working with researchers at Massachusetts General Hospital, Goosens’ lab is now planning to study ghrelin levels in human patients suffering from anxiety and fear disorders. They are also planning a clinical trial of a drug that blocks ghrelin to see if it can prevent relapse of depression. 

The research was funded by the U.S. Army Research Office, the Defense Advanced Research Projects Agency, and the National Institute of Mental Health.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biomedical Imaging at One-Thousandth the Cost
Mathematical modeling enables $100 depth sensor to approximate the measurements of a $100,000 piece of lab equipment.
Tuesday, November 24, 2015
Game for Climate Adaptation
MIT-led project shows a new method to help communities manage climate risks.
Friday, November 06, 2015
Using Ultrasound to Improve Drug Delivery
New approach could aid in treatment of inflammatory bowel disease.
Friday, October 23, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Messing With The Monsoon
Manmade aerosols can alter rainfall in the world’s most populous region.
Friday, October 02, 2015
A Natural Light Switch
MIT scientists identify and map the protein behind a light-sensing mechanism.
Tuesday, September 29, 2015
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Monday, September 28, 2015
How Flu Viruses Gain The Ability To Spread
New study reveals the soft palate is a key site for evolution of airborne transmissibility.
Friday, September 25, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Tuesday, September 22, 2015
Personalized Heart Models For Surgical Planning
System can convert MRI scans into 3D-printed, physical models in a few hours.
Friday, September 18, 2015
Learning About Human Health Using Sewage
PhD student Mariana Matus studies human waste to understand individual and community health.
Thursday, September 17, 2015
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
New Analysis Technique for Chiral Activity in Molecules
Professor Hyunwoo Kim of the Chemistry Department and his research team have developed a technique that can easily analyze the optical activity of charged compounds by using nuclear magnetic resonance (NMR) spectroscopy.
Measuring microRNAs in Blood to Speed Cancer Detection
A simple, ultrasensitive microRNA sensor holds promise for the design of new diagnostic strategies and, potentially, for the prognosis and treatment of pancreatic and other cancers.
Best Test to Diagnose Strangles in Horses Identified
New research by Dr. Ashley Boyle of New Bolton Center’s Equine Field Service team shows that the best method for diagnosing Strangles in horses is to take samples from a horse’s guttural pouch and analyze them using a loop-mediated amplification (LAMP) polymerase chain reaction (PCR) test.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Antibiotics on Our Plates 'Could Lead to Health Catastrophe'
Two medical experts from The University of Queensland are urging China to curb its use of antibiotics in animals to avoid what could be a ‘major health catastrophe’ for humans.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Personalized Drug Screening for Multiple Myeloma Patients
A personalized method for testing the effectiveness of drugs that treat multiple myeloma may predict quickly and more accurately the best treatments for individual patients with the bone marrow cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos