Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Brain May Flush Out Toxins During Sleep

Published: Friday, October 18, 2013
Last Updated: Friday, October 18, 2013
Bookmark and Share
NIH-funded study suggests sleep clears brain of damaging molecules associated with neurodegeneration.

A good night’s rest may literally clear the mind. Using mice, researchers showed for the first time that the space between brain cells may increase during sleep, allowing the brain to flush out toxins that build up during waking hours. These results suggest a new role for sleep in health and disease. The study was funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the NIH.

 “Sleep changes the cellular structure of the brain. It appears to be a completely different state,” said Maiken Nedergaard, M.D., D.M.Sc., co-director of the Center for Translational Neuromedicine at the University of Rochester Medical Center in New York, and a leader of the study.

For centuries, scientists and philosophers have wondered why people sleep and how it affects the brain. Only recently have scientists shown that sleep is important for storing memories. In this study, Dr. Nedergaard and her colleagues unexpectedly found that sleep may be also be the period when the brain cleanses itself of toxic molecules.

Their results, published in Science, show that during sleep a plumbing system called the glymphatic system may open, letting fluid flow rapidly through the brain. Dr. Nedergaard’s lab recently discovered the glymphatic system helps control the flow of cerebrospinal fluid (CSF), a clear liquid surrounding the brain and spinal cord.

“It’s as if Dr. Nedergaard and her colleagues have uncovered a network of hidden caves and these exciting results highlight the potential importance of the network in normal brain function,” said Roderick Corriveau, Ph.D., a program director at NINDS.

Initially the researchers studied the system by injecting dye into the CSF of mice and watching it flow through their brains while simultaneously monitoring electrical brain activity. The dye flowed rapidly when the mice were unconscious, either asleep or anesthetized. In contrast, the dye barely flowed when the same mice were awake.

“We were surprised by how little flow there was into the brain when the mice were awake,” said Dr. Nedergaard. “It suggested that the space between brain cells changed greatly between conscious and unconscious states.”

To test this idea, the researchers inserted electrodes into the brain to directly measure the space between brain cells. They found that the space inside the brains increased by 60 percent when the mice were asleep or anesthetized.

“These are some dramatic changes in extracellular space,” said Charles Nicholson, Ph.D., a professor at New York University’s Langone Medical Center and an expert in measuring the dynamics of brain fluid flow and how it influences nerve cell communication.

Certain brain cells, called glia, control flow through the glymphatic system by shrinking or swelling. Noradrenaline is an arousing hormone that is also known to control cell volume. Similar to using anesthesia, treating awake mice with drugs that block noradrenaline induced unconsciousness and increased brain fluid flow and the space between cells, further supporting the link between the glymphatic system and consciousness.

Previous studies suggest that toxic molecules involved in neurodegenerative disorders accumulate in the space between brain cells. In this study, the researchers tested whether the glymphatic system controls this by injecting mice with labeled beta-amyloid, a protein associated with Alzheimer’s disease, and measuring how long it lasted in their brains when they were asleep or awake. Beta-amyloid disappeared faster in mice brains when the mice were asleep, suggesting sleep normally clears toxic molecules from the brain.

“These results may have broad implications for multiple neurological disorders,” said Jim Koenig, Ph.D., a program director at NINDS. “This means the cells regulating the glymphatic system may be new targets for treating a range of disorders.”

The results may also highlight the importance of sleep.

“We need sleep. It cleans up the brain,” said Dr. Nedergaard.

This work was supported by grants from the NINDS (NS078167, NS07830, NS028642).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Scientific News
Head Injury Patients have Protein Clumps Associated with Alzheimer’s Disease
Scientists have revealed that protein clumps associated with Alzheimer's disease are also found in the brains of people who have had a head injury.
Exposure to Air Pollution 30 Years Ago Associated with Increased Risk of Death
Exposure to air pollution more than 30 years ago may still affect an individual's mortality risk today, according to new research from Imperial College London.
More Then 1 in 20 U.S. Children have Dizziness and Balance Problems
Researchers at NIH have found that girls have a higher prevalence of dizziness and balance problems compared to boys, 5.7 percent and 5.0 percent.
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Low-Cost, Portable NQR Spectroscopy
A researcher at Case Western Reserve University is developing a low-cost, portable prototype designed to detect tainted medicines and food supplements that otherwise can make their way to consumers. The technology can authenticate good medicines and supplements.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Spero Therapeutics Announces $30 Million Series B Preferred Financing
Company has announced financing of $30 million to support development of novel therapies to treat gram-negative bacterial infections.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!