Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Finds ‘Microbial Clock’ may Help Determine Time of Death

Published: Monday, October 21, 2013
Last Updated: Monday, October 21, 2013
Bookmark and Share
An intriguing study may provide a powerful new tool in the quiver of forensic scientists attempting to determine the time of death.

The clock is essentially the lock-step succession of bacterial changes that occur postmortem as bodies move through the decay process. And while the researchers used mice for the new study, previous studies on the human microbiome – the estimated 100 trillion or so microbes that live on and in each of us – indicate there is good reason to believe similar microbial clocks are ticking away on human corpses, said Jessica Metcalf, a CU-Boulder postdoctoral researcher and first author on the study.

“While establishing time of death is a crucial piece of information for investigators in cases that involve bodies, existing techniques are not always reliable,” said Metcalf of CU-Boulder’s BioFrontiers Institute. “Our results provide a detailed understanding of the bacterial changes that occur as mouse corpses decompose, and we believe this method has the potential to be a complementary forensic tool for estimating time of death.”

Currently, investigators use tools ranging from the timing of last text messages and corpse temperatures to insect infestations on bodies and “grave soil” analyses, with varying results, she said. And the more days that elapse following a person’s demise, the more difficult it becomes to determine the time of death with any significant accuracy.

Using high-technology gene sequencing techniques on both bacteria and microbial eukaryotic organisms like fungi, nematodes and amoeba postmortem, the researchers were able to pinpoint time of mouse death after a 48-day period to within roughly four days. The results were even more accurate following an analysis at 34 days, correctly estimating the time of death within about three days, said Metcalf.

A paper on the subject was published Sept. 23 in the new online science and biomedical journal, eLIFE, a joint initiative of the Howard Hughes Medical Institute, the Max Planck Society and the Wellcome Trust Fund. The study was funded by the National Institute of Justice.

The researchers tracked microbial changes on the heads, torsos, body cavities and associated grave soil of 40 mice at eight different time points over the 48-day study. The stages after death include the “fresh” stage before decomposition, followed by “active decay” that includes bloating and subsequent body cavity rupture, followed by “advanced decay,” said Chaminade University forensic scientist David Carter, a co-author on the study.

“At each time point that we sampled, we saw similar microbiome patterns on the individual mice and similar biochemical changes in the grave soil,” said Laura Parfrey, a former CU-Boulder postdoctoral fellow and now a faculty member at the University of British Columbia who is a microbial and eukaryotic expert. “And although there were dramatic changes in the abundance and distribution of bacteria over the course of the study, we saw a surprising amount of consistency between individual mice microbes between the time points -- something we were hoping for.”

As part of the project, the researchers also charted “blooms” of a common soil-dwelling nematode well known for consuming bacterial biomass that occurred at roughly the same time on individual mice during the decay period. “The nematodes seem to be responding to increases in bacterial biomass during the early decomposition process, an interesting finding from a community ecology standpoint,” said Metcalf.

“This work shows that your microbiome is not just important while you’re alive,” said CU-Boulder Associate Professor Rob Knight, the corresponding study author who runs the lab where the experiments took place. “It might also be important after you're dead.”

The research team is working closely with assistant professors Sibyl Bucheli and Aaron Linne of Sam Houston State University in Huntsville, Texas, home of the Southeast Texas Applied Forensic Science Facility, an outdoor human decomposition facility known popularly as a “body farm.” The researchers are testing bacterial signatures of human cadavers over time to learn more about the process of human decomposition and how it is influenced by weather, seasons, animal scavenging and insect infestations.

The new study is one of more than a dozen papers authored or co-authored by CU-Boulder researchers published in the past several years on human microbiomes. One of the studies, led by Professor Noah Fierer, a co-author on the new study, brought to light another potential forensic tool -- microbial signatures left on computer keys and computer mice, an idea enthralling enough it was featured on a “CSI: Crime Scene Investigation” television episode.

“This study establishes that a body’s collection of microbial genomes provides a store of information about its history,” said Knight, also an associate professor of chemistry and biochemistry and a Howard Hughes Medical Institute Early Career Scientist. “Future studies will let us understand how much of this information, both about events before death -- like diet, lifestyle and travel -- and after death can be recovered.”

In addition to Metcalf, Fierer, Knight, Carter and Parfrey, other study authors included Antonio Gonzalez, Gail Ackerman, Greg Humphrey, Mathew Gebert, Will Van Treuren, Donna Berg Lyons and Kyle Keepers from CU-Boulder, former BioFrontiers doctoral student Dan Knights from the University of Minnesota, and Yan Go and James Bullard from Pacific Biosciences in Menlo Park, Calif. Keepers participated in the study as an undergraduate while Gonzalez, now a postdoctoral researcher, was a graduate student during the study.

“There is no single forensic tool that is useful in all scenarios, as all have some degree of uncertainty,” said Metcalf. “But given our results and our experience with microbiomes, there is reason to believe we can get past some of this uncertainty and look toward this technique as a complementary method to better estimate time of death in humans.”

Gene sequencing equipment for the study included machines from Illumina of San Diego and Pacific Biosciences of Menlo Park, Calif. The Illumina data were generated at CU-Boulder in the BioFrontiers Next Generation Sequencing Facility.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First Atlas Of Airborne Microbes Across US
Bacteria and fungal species were identified from outdoor dust samples collected from all 50 states.
Wednesday, April 22, 2015
Next-Gen Melanoma Drug Excels in Lab Tests
Anti-cancer activity was reported in 10 out of 11 patient tumor samples grown in mice and treated with the experimental drug TAK-733.
Thursday, November 13, 2014
CU Study Suggests Link Between Tumor Suppressors and Starvation Survival
A particular tumor suppressor gene that fights cancer cells does more than clamp down on unabated cell division, it also can help make cells more fit by allowing them to fend off stress.
Tuesday, May 14, 2013
Serendipity Points to New Potential Target and Therapy for Melanoma
A University of Colorado Cancer Center describes a new target and potential treatment for melanoma, the most dangerous form of skin cancer.
Friday, December 21, 2012
Study Shows Air Emissions Near Fracking Sites May Pose Health Risk
The report, based on three years of monitoring, found a number of potentially toxic petroleum hydrocarbons in the air near the wells including benzene, ethylbenzene, toluene and xylene.
Tuesday, March 20, 2012
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Less May Be More in Slowing Cholera Epidemics
Mathematical model shows more cases may be prevented and more lives saved when using one dose of cholera vaccine instead of recommended two doses.
Investigating the Vape
Expert independent review concludes that e-cigarettes have potential to help smokers quit.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Researchers Discover Synthesis of a New Nanomaterial
Interdisciplinary team creates biocomposite for first time using physiological conditions.
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Flu Remedies Help Combat E. coli Bacteria
Physiologists from the University of Zurich have now discovered why the intestinal bacterium Escherichia coli (E. coli) multiplies heavily and has an inflammatory effect.
Marijuana Genome Unraveled
A study by Canadian researchers is providing a clearer picture of the evolutionary history and genetic organization of cannabis, a step that could have agricultural, medical and legal implications for this valuable crop.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!