Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Develop Stem Cell Therapies for Acute Lung Injury

Published: Monday, October 21, 2013
Last Updated: Monday, October 21, 2013
Bookmark and Share
An estimated 200,000 patients a year have acute respiratory failure in the U.S. and mortality is about 30 to 40 percent.

Matthay is working with Jae-Woo Lee, MD, Kathleen Liu, MD, MAS, PhD, and Carolyn Calfee, MD, MAS, associate professors of medicine and anesthesia, on developing cell-based therapies that he hopes “will make a major difference in reducing mortality in patients with acute respiratory distress syndrome, a major cause of acute respiratory failure in critically-ill patients.”

The research team’s experience translating these therapies from scientific concept to clinical practice is featured in a series of videos on LaunchPad, a new online resource for translational researchers that is managed by UCSF’s Clinical and Translational Science Institute (CTSI).

Moving a novel treatment into clinical trials requires an "Investigational New Drug" (IND) approval from the U.S. Food and Drug Administration (FDA). As Liu describes in the video, “Preparing the entire IND application for this project was going to be an enormous undertaking that I think we hadn’t really appreciated.”

Up until the IND process, the team of investigators had worked over many years on pre-clinical studies supporting proof-of-concept for a therapy using a type of stem cells, known as mesenchymal stem cells (MSCs), that could potentially treat injury to a variety of epithelial organs, including the lung and kidney.

Bone marrow-derived MSCs release proteins and lipids with potent anti-inflammatory effects as well as other growth factors that seem to enhance lung repair. Favorable pre-clinical data using these cells to treat injured lung tissue in vitro and in small and large animal models encouraged them to move into clinical trials. The struggle to implement this potentially life-saving therapy began with a search for clinical-grade MSCs. Liu credits “serendipity” and “six degrees of separation” for leading them to a collaborator at the University of Minnesota who creates the cells used in the team’s cell-based therapy.

The experience “speaks to how much of science is making connections with people who don’t do exactly what you do,” Liu says.

Identifying Gaps in the Development Plan

Matthay admits being naïve regarding the IND process, and following a pre-IND consultation, the investigators discovered that there was additional pre-clinical work to be done using a larger animal model. Matthay says that serendipity again came into play as a colleague at the University of Texas had the perfect model system available and agreed to carry out the experiments in collaboration.

Matthay and his colleagues have amassed a body of compelling pre-clinical data and secured funding to carry out phase two trials. However, the National Institutes of Health Heart, Lung and Blood Institute (NHLBI) that funded the Phase 2 trial does not cover the required Phase 1 trial focusing on safety. Furthermore, no clinical studies could be initiated without an approved IND.

It was at that point that the Catalyst Awards, another program managed by CTSI, “came to our rescue,” says Matthay. Liu echoes the sentiment, explaining that the Catalyst Awards and their advisor Dave Savello “were instrumental in helping us identify our knowledge gaps, and identify individuals and experts who could help us with those components of the IND that we simply don’t have the expertise to do.”

The Catalyst Awards provide expert feedback and funding to accelerate translational research into marketable products. Regulatory consultants helped Matthay and Liu develop a solid framework for their clinical trials, guiding them towards operationalizing the details of the design. This additional support led to the approval of an IND for the Phase 1 trial of this exciting new therapy, which enrolled its first patient here at UCSF in early July of this year.

UCSF's CTSI is a member of the Clinical and Translational Science Awards network funded through the National Center for Advancing Translational Sciences (grant Number UL1 TR000004) at the NIH Health. Under the banner of "Accelerating Research to Improve Health," CTSI provides a wide range of resources and services for researchers, and promotes online collaboration and networking tools such as UCSF Profiles.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!