Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Cell Growth Discovery Has Implications for Targeting Cancer

Published: Monday, October 21, 2013
Last Updated: Monday, October 21, 2013
Bookmark and Share
The way cells divide to form new cells is controlled in previously unsuspected ways.

The steps leading a quiet cell to make and divvy up new parts to form daughter cells rely on some of the cell’s most complex molecular machines. Different machines play key roles at different stages of this cell cycle. Each of these cellular machines consists of many proteins assembled into a functioning whole. They carry out such tasks as repairing DNA in the newly replicated gene-bearing chromosomes, for instance, or helping pull the chromosomes apart so that they can be allocated to daughter cells.

In a study published online on Oct. 10, 2013 in the journal Molecular Cell, UCSF researchers led by molecular biologist Davide Ruggero, PhD, associate professor of urology, and computational biologist Barry Taylor, PhD, assistant professor of epidemiology and biostatistics, found that the production of entire sets of proteins that work together to perform such crucial tasks is ramped up together, all at once — not due to the transcription of genes into messenger RNA, a phenomenon scientists often study to sort out cellular controls — but at a later stage of gene expression that occurs within the cell’s protein-making factories, called ribosomes.

“We have found that these proteins are regulated specifically and exquisitely during the cell cycle,” Ruggero said. When this regulation falters, it wreaks havoc in the cell, he added. “Cell-cycle control is a process that is most often misregulated in human disease,” he said.

More specifically, the researchers found that this coordinated timing of protein production during the cell cycle is largely governed at the tail end of gene expression, within the ribosome, where cellular machinery acts on messenger RNA to churn out the chains of amino acids that eventually fold into functional form as proteins.

An Often-Neglected Process in Many Tumors

Ruggero reported key evidence in 2010 suggesting that this stage of protein production, called “translation,” might be an often-neglected process in many tumors, ranging from lymphomas, multiple myeloma and prostate cancer.

In the new study, the researchers examined translation of messenger RNA into protein at the classic phases of the cell cycle, before the cell actually divides. These are the G1 phase, when cells grow and make lots of proteins before replicating their DNA; the S phase, when cells replicate their DNA; and the G2 phase, when cells make internal components known as organelles, which they divvy up along with the chromosomes when the cell actually divides during mitosis.

The scientists used a technique known as ribosome profiling, originally developed for yeast cells in the lab of Jonathan Weismann, PhD, Howard Hughes Investigator at UCSF and professor of cellular and molecular pharmacology, to figure out which messenger RNA was being translated into protein by the ribosome during human cell division. They then used computational techniques developed by Taylor’s lab team along with the lab team of Adam Olshen, PhD, professor of epidemiology and biostatistics, to better quantify which genes had been translated into proteins.

By conducting a genome-wide investigation of translation and interrogating the data with sophisticated computer algorithms, the researchers discovered that different groups of protein were made in abundance at a particular phase, only to be quieted during another phase of the cell cycle. Previous studies of translation of messenger RNA into protein focused on only one or just a few genes at a time, according to Ruggero and Taylor.

“We hope these methods will be helpful to others who study gene regulation at the translational stage in various diseases, and those who want to identify specific targets for drug development based on discoveries of aberrant translation,” Taylor said.

Ruggero has been a pioneer in probing the ability of tumor cells to make extraordinary amounts of protein to sustain their rapid growth and immortality. He also is exploring ways to therapeutically target this excess protein production in cancer.

One striking finding from this new UCSF study is the discovery that production of a protein called RICTOR is boosted due to increased translation during the S phase of the cell cycle. RICTOR serves as a signal to help the cell cycle run like finely tuned clockwork, but several studies suggest that RICTOR often is constitutively turned on in cancer, Ruggero said.

The biochemical signaling cascade within the cell that RICTOR is a part of is under extensive investigation for experimental cancer therapies, and these new findings may point to novel strategies for drug development Ruggero said. Ruggero and Craig Stumpf, PhD, a postdoctoral fellow with his lab and the first author of the Molecular Cell paper, now are tracking down the upstream trigger that coordinates timing of many of the other suites of proteins that are produced simultaneously during the different cell-cycle phases.

UCSF technician Melissa Moreno also worked on the study. The research was funded by grants from the National Institutes of Health.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children’s Hospital.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Organic Plant Breeding Effort to Produce Novel Varieties and Train New Breeders
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Some 3-D Printed Objects Are Toxic
Researchers at the University of California, Riverside have found parts produced by some commercial 3-D printers are toxic to certain fish embryos.
Monday, November 09, 2015
Artificial Kidney Research Gets A Boost
Development of a surgically implantable, artificial kidney — a promising alternative to kidney transplantation or dialysis for people with end-stage kidney disease — has received a $6 million boost.
Monday, November 09, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Sustaining Our Salad
Improving lettuce crops is the aim of a new, $4.5 million grant, awarded to University of California, Davis, researchers by the U.S. Department of Agriculture's National Institute of Food and Agriculture.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Influenza A Viruses More Likely To Emerge In East Asia Than North America
Novel strains of influenza A are more likely to emerge in East Asia than in North America, according to a global analysis by the One Health Institute at the UC Davis School of Veterinary Medicine and EcoHealth Alliance.
Wednesday, September 30, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Crunching Numbers to Combat Cancer
UCSF receives $5 million to integrate data from cancer research models.
Wednesday, September 16, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Using Drug-Susceptible Parasites to Fight Drug Resistance
Researchers at the University of Georgia have developed a model for evaluating a potential new strategy in the fight against drug-resistant diseases.
Boosting Breast Cancer Treatment
To more efficiently treat breast cancer, scientists have been researching molecules that selectively bind to cancer cells and deliver a substance that can kill the tumor cells, for several years.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
How Cells ‘Climb’ to Build Fruit Fly Tracheas
Mipp1 protein helps cells sprout “fingers” for gripping.
Research Finding Could Lead to Targeted Therapies for IBD
Findings published online in Cell Reports.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos