Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Super-Enhancers Seen as ‘Rosetta Stone’ for Dialog Between Genes and Disease

Published: Monday, October 21, 2013
Last Updated: Monday, October 21, 2013
Bookmark and Share
Regulatorsthat control cell identity found to be enriched in mutated regions of genome.

Having recently discovered a set of powerful gene regulators that control cell identity in a few mouse and human cell types, Whitehead Institute scientists are now showing that these regulators—which they named “super-enhancers”—act across a vast array of human cell types and are enriched in mutated regions of the genome that are closely associated with a broad spectrum of diseases.

The findings, published online today by the journal Cell, suggest that these super-enhancers, first described in Cell several months ago by Whitehead Member Richard Young, could ultimately play important roles in disease diagnostics and therapeutics.

In April, Young reported that while the total number of genetic control elements is likely in the millions, only a few hundred super-enhancers regulate the key genes that give each cell its unique properties and functions. At the time, Young hinted that the discovery, which was based on work primarily in embryonic stem cells, would help to solve the regulatory circuitry of all human cells. This latest research represents a significant step toward that goal, producing a catalog of super-enhancers in nearly 100 human cell and tissue types.

“We’ve gone from a few cells to a broad swath of human cell types to create this resource and make it available to the biomedical research community,” says Young, who is also a professor of biology at MIT.

Young notes that the striking finding of the new study is that beyond their roles in control of healthy cells, super-enhancers are involved in regulating the function—and dysfunction—of diseased cells.

“We were surprised that for so many different diseases, mutations associated with the disease occur in super-enhancers” says postdoctoral scientist Brian Abraham, an author of the study. Indeed, he and other researchers in Young’s lab found in disease-relevant cell types genetic mutations associated with Alzheimer’s disease, diabetes, and many autoimmune diseases in genomic regions under the control of specific super-enhancers.

The researchers also found super-enhancers operating in particularly insidious fashion across a broad spectrum of cancers, observing cancer cells assembling their own super-enhancers to overproduce malevolent oncogenes that drive such cancer hallmarks as hyperproliferation, invasion, and metastasis. Young believes that identifying, mapping, and disrupting super-enhancers could alter the way cancers are managed in the clinic.

“When we focus on personalized medicine for cancer patients, super-enhancers could serve as useful biomarkers for tracking and understanding the evolution of a person’s cancer,” says Young. “Ultimately, super-enhancers may well become important targets for therapeutic intervention.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genome-Wide Screen Reveals Parasitic Infection Mechanisms
Researchers have conducted the first genome-wide screen in Apicomplexa that sheds light on parasite genomes.
Friday, September 02, 2016
Absolute Quantification of Mitochondrial Metabolites
Scientists have developed a method to quickly isolate and systematically measure metabolite concentrations within mitochondria.
Friday, September 02, 2016
Identifying a Genetic Mutation Behind Sporadic Parkinson’s Disease
Using a novel method, Whitehead Institute researchers have determined how a non-coding mutation identified in genome-wide association studies (GWAS) can contribute to sporadic Parkinson’s disease (PD).
Friday, April 22, 2016
3D Map of the Human Genome
Whitehead Institute researchers have created a map of the DNA loops that comprise the three dimensional (3D) structure of the human genome and regulate gene expression in human embryonic stem (ES) cells and adult cells.
Monday, December 14, 2015
Tracking Changes in DNA Methylation In Real Time At Single-Cell Resolution
Whitehead Institute researchers have developed a methodology to monitor changes in DNA methylation over time in individual cells.
Friday, September 25, 2015
Imaging Immunity
Noninvasive imaging of immune system detects tumors, could monitor therapeutic response.
Wednesday, April 22, 2015
Yeast, Human Stem Cells Drive Discovery of New Parkinson’s Disease Drug Targets
Using a discovery platform whose components range from yeast cells to human stem cells, scientists have identified a novel Parkinson’s disease drug target.
Wednesday, October 30, 2013
Sex Chromosome Shocker: The “Female” X a Key Contributor to Sperm Production
Painstaking new analysis of the genetic sequence of the X chromosome reveals that large portions of the X have evolved to play a specialized role in sperm production.
Tuesday, July 23, 2013
Thwarting Protein Production Slows Cancer Cells’ Malignant March
Protein production or translation is tightly coupled to a highly conserved stress response that cancer cells rely on for survival and proliferation.
Tuesday, July 23, 2013
Scientists Identify Gene that Controls Aggressiveness in Breast Cancer Cells
Researchers have identified a transcription factor, known as ZEB1, that is capable of converting non-aggressive basal-type cancer cells into highly malignant, tumor-forming cancer stem cells (CSCs).
Monday, July 08, 2013
Precision Gene Targeting in Stem Cells Corrects Disease-Causing Mutations
Whitehead Institute researchers manipulate targeted genes in both human embryonic stem cells and induced pluripotent stem cells.
Tuesday, July 19, 2011
Whitehead Member Rudolf Jaenisch Honored for Groundbreaking Stem Cell Research
Israel’s Wolf Foundation has named Whitehead Institute Founding Member Rudolf Jaenisch a recipient of the prestigious 2011 Wolf Prize in Medicine.
Friday, February 18, 2011
Embryonic Stem Cells Reveal Oncogene's Secret Growth Formula
Researchers describes a pausing step in the transcription process that serves to regulate expression of as many as 80% of the genes in mammalian cells.
Monday, May 03, 2010
Chimp and Human Y Chromosomes Evolving Faster than Expected
Whitehead Institute researchers have found considerable differences in the genetic sequences of the human and chimpanzee Y Chromosomes.
Wednesday, January 20, 2010
Knockouts in Human Cells Point to Pathogenic Targets
Whitehead researchers have developed a new type of genetic screen for human cells to pinpoint specific genes and proteins used by pathogens.
Monday, November 30, 2009
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Researchers Find a Gap in the Brain’s Firewall Against Parkinson’s Disease
Researchers at NIH have found mouse study that identified a key player in the progression of the disorder.
Fat Cells That Amplify Nerve Signals in Response to Cold Also Affect Blood Sugar Metabolism
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
Drug to Treat Alcohol Use Disorder Shows Promise Among Drinkers With High Stress
The findings suggest that potential future studies with drugs targeting vasopressin blockade should focus on populations of people with AUD who also report high levels of stress.
C Dots Show Powerful Tumor Killing Effect
Nanoparticles known as Cornell dots, or C dots, have shown great promise as a therapeutic tool in the detection and treatment of cancer.
Charles River Acquires Agilux
Enhances Charles River’s early-stage capabilities in bioanalytical services.
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!