Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Human Cells Used to Grow New Hair

Published: Wednesday, October 23, 2013
Last Updated: Wednesday, October 23, 2013
Bookmark and Share
A new hair restoration method that can generate human hair growth has been developed by an international team of scientists.

Researchers at Durham University, UK, and Columbia University Medical Center (CUMC), USA, have devised the method which is the first to use cloned human cells to induce hair growth, rather than redistributing hair from one part of the scalp to another.

The researchers said their findings could significantly expand the use of hair transplantation to women with hair loss, who tend to have insufficient donor hair, as well as to men in early stages of baldness.

The research could also be "an important step" in creating replacement skin with hair follicles to aid the recovery of burn patients, the scientists said.

The study is published in the online edition of Proceedings of the National Academy of Sciences (PNAS).

Previous research by Professor Colin Jahoda at Durham University  found that rodent dermal papillae – a small, group of cells at the base of the hair follicle which play a pivotal role in hair growth – could be easily harvested and transplanted back into rodent skin.

Unlike human dermal papillae, rodent papillae tend to spontaneously clump together creating their own tissue environment, and since they remained as a collective this ultimately helped them to reprogramme the recipient skin to grow new follicles.

Study first author Dr Claire Higgins, a Durham University graduate, now based at CUMC, said this suggested that if human papillae could be cultured to encourage them to clump together as they do in rodents, the conditions could be created to induce hair growth in human skin.

To test this theory, researchers at CUMC harvested dermal papillae from seven human donors and cloned the cells in tissue culture. No additional growth factors were added to the cultures.

After a few days, the cultured papillae were transplanted between the dermis and epidermis layers of human skin that had been grafted onto the backs of mice. In five of the seven tests, the transplants resulted in new hair growth that lasted at least six weeks.

DNA analysis confirmed that the new hair follicles were human and genetically matched the donors.

More work needs to be done before the method can be tested in humans, according to the researchers, but the team is optimistic that clinical trials could begin in the near future.

Study co-author Professor Colin Jahoda, in the School of Biological and Biomedical Sciences, at Durham University  said: "We need to establish the origins of the critical intrinsic properties of the newly induced hairs, such as their hair cycle kinetics, colour, angle, positioning, and texture.

"We also need to establish the role of the host epidermal cells that the dermal papilla cells interact with, to make the new structures."

Professor Jahoda, who is also Co-Director of the North East Stem Cell Institute (NESCI), added: "Ultimately we think that this study is an important step toward the goal of creating a replacement skin that contains hair follicles for use with, for example, burn patients."

Dr Angela M Christiano, PhD, the Richard and Mildred Rhodebeck Professor of Dermatology and Professor of Genetics & Development, at CUMC, said the research "has the potential to transform the medical treatment of hair loss.

She added: "About 90 percent of women with hair loss are not strong candidates for hair transplantion surgery because of insufficient donor hair.

"This method offers the possibility of inducing large numbers of hair follicles or rejuvenating existing hair follicles, starting with cells grown from just a few hundred donor hairs. This approach could make hair transplantation available to individuals with a limited number of follicles, including those with female-pattern hair loss, scarring alopecia, and hair loss due to burns."

According to Dr Christiano, such patients gain little benefit from existing hair-loss medications, which tend to slow the rate of hair loss but usually do not stimulate robust new hair growth.

She said: "Current hair-loss medications tend to slow the loss of hair follicles or potentially stimulate the growth of existing hairs, but they do not create new hair follicles. Neither do conventional hair transplants, which relocate a set number of hairs from the back of the scalp to the front.

"Our method, in contrast, has the potential to actually grow new follicles using a patient's own cells. This could greatly expand the utility of hair restoration surgery to women and to younger patients-now it is largely restricted to the treatment of male-pattern baldness in patients with stable disease."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Global Food Security (GFS) Develops New Funding Programme
New programme of research to tackle resilience of the food system.
Tuesday, June 02, 2015
£4M to Fund Important Food Crops from BBSRC and NERC
Research projects designed with industry partners to maximize impact.
Tuesday, June 02, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
New Test For Detecting Horse Meat
New test compares differences in chemical compositions of the fat found in meats.
Tuesday, December 02, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Drugs Used to Treat Lung Disease Work With the Body Clock
Scientists from The University of Manchester have discovered why medication to treat asthma and pneumonia can become ineffective.
Thursday, August 14, 2014
Researchers Use ‘Big Data’ Approach to Map the Relationships Between Human and Animal Diseases
EID2 database used to prevent and tackle disease outbreaks around the globe.
Thursday, July 17, 2014
TGAC at the Forefront of Next Generation Sequencing Capability
The Genome Analysis Centre adds two Illumina HiSeq 2500 machines to its platform suite.
Thursday, June 26, 2014
UK Diet and Health Research Awarded £4M
Funding awarded to six projects investigating diet and health to enable the food and drink industry to meet the needs of UK consumers.
Wednesday, June 25, 2014
Better Understanding of Disease Resistance Genes in Crops
Effector-triggered defence concept describes how plants protect themselves against the apoplast.
Friday, June 06, 2014
Investment Provides Access to the World’s Most Advanced Crystallography Technology
The UK community will benefit thanks to a £5.64M investment from UK research funders.
Tuesday, June 03, 2014
Public-private Research Partnership to Support Sustainable Agricultural Systems
The partnership will support projects that will help provide solutions to key challenges affecting the sustainability of the UK crop and livestock sectors.
Friday, May 23, 2014
Protective Proteins Reduce Damage to Blood Vessels
Proteins found blood have been shown to reduce damage caused to blood vessels as we age, and in conditions such as atherosclerosis and arthritis.
Thursday, May 22, 2014
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
How To Keep Your Rice Arsenic-Free
Researchers at Queen’s University Belfast have made a breakthrough in discovering how to lower worrying levels of arsenic in rice that is eaten all over the world.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Computer Model Could Explain how Simple Molecules Took First Step Toward Life
Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!