Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Stem Cells: How to Predict Their Fate

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Technique has potential for regenerative medicine and drug development.

University of Toronto researchers have developed a method that can rapidly screen human stem cells and better control what they will become - a technology that could be used for regenerative medicine and drug development.

The findings are published in this week's issue of the journal Nature Methods.

“The work allows for a better understanding of how to turn stem cells into clinically useful cell types more efficiently,” said Emanuel Nazareth, a PhD student at U of T's Institute of Biomaterials & Biomedical Engineering (IBBME). The research comes out of the lab of Professor Peter Zandstra, Canada Research Chair in Bioengineering at U of T.

The researchers used human pluripotent stem cells (hPSC), cells which have the potential to differentiate and eventually become any type of cell in the body. But the key to getting stem cells to grow into specific types of cells, such as skin cells or heart tissue, is to grow them in the right environment in culture, and there have been challenges in getting those environments (which vary for different types of stem cells) just right, Nazareth said.

The researchers developed a high-throughput platform, which uses robotics and automation to test many compounds or drugs at once, with controllable environments to screen hPSCs in. With it, they can control the size of the stem cell colony, the density of cells, and other parameters in order to better study characteristics of the cells as they differentiate or turn into other cell types. Studies were done using stem cells in micro-environments optimized for screening and observing how they behaved when chemical changes were introduced .

Researchers found that two specific proteins within stem cells, Oct4 and Sox2, can be used to track the four major early cell fate types that stem cells can turn into, allowing four screens to be performed at once.

“One of the most frustrating challenges is that we have different research protocols for different cell types. But as it turns out, very often those protocols don’t work across many different cell lines,” Nazareth said.

The work also provides a way to study differences across cell lines that can be used to predict certain genetic information, such as abnormal chromosomes. What’s more, these predictions can be done in a fraction of the time compared to other existing techniques, and for a substantially lower cost compared to other testing and screening methods.

“We anticipate this technology will underpin new strategies to identify cell fate control molecules, or even drugs, for a number of different stem cell types,” Zandstra said.

As a drug screening technology "it’s a dramatic improvement over its predecessors,” said Nazareth. He notes that in some cases, the new technology can drop testing time from up to a month to a mere two days.

Professor Zandstra was awarded the 2013 Till & McCulloch Award in recognition of this contribution to global stem cell research.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Wednesday, October 07, 2015
World’s Largest Protein Interaction Map Created
A multinational team of scientists sifted through cells of vastly different organisms – from amoebae to worms to mice to humans – to reveal how proteins fit together to build different cells and bodies.
Wednesday, September 09, 2015
Why We’re Smarter Than Chickens
Toronto researchers have discovered that a single molecular event in our cells could hold the key to how we evolved to become the smartest animal on the planet.
Monday, August 24, 2015
New Chip Makes Testing For Antibiotic-Resistant Bacteria Faster, Easier
Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time.
Wednesday, May 27, 2015
Hydrogels Help Stem Cells Accelerate Healing
Scientists say they have made a breakthrough in cell transplantation using a gel-like biomaterial that keeps stem cells alive and helps them integrate better into tissue.
Monday, May 18, 2015
An end To Cancer Pain? Dentistry Researcher Finds The Pain Trigger
Study identifies TMPRSS2 as potential culprit behind the most severe forms of cancer pain.
Tuesday, April 28, 2015
How Disease-Related Proteins Work; a "Truly Momentous" Discovery
Researchers are helping demystify an important class of proteins associated with disease.
Tuesday, July 09, 2013
A Recipe for Stem Cell Production
Researchers may be one step closer to a ‘recipe’ for large-scale production of stem cells for use in research and therapy.
Tuesday, July 09, 2013
A Recipe for Stem Cell Production
Researchers may be one step closer to a ‘recipe’ for large-scale production of stem cells for use in research and therapy.
Tuesday, July 09, 2013
University of Toronto Breakthrough Allows Fast, Reliable Identification of Pathogens
Researchers have created an electronic chip that can analyze blood and other clinical samples for infectious bacteria with record-breaking speed.
Friday, June 21, 2013
Liver and Pancreas Precursor Cells Created using New Stem Cell Production Method
Scientists in Canada have overcome a key research hurdle to developing regenerative treatments for diabetes and liver disease.
Friday, December 02, 2011
Conserved Gene Expression Reveals Our ‘Inner Fish’
A study of gene expression in chickens, frogs, pufferfish, mice and people has revealed surprising similarities in several key tissues.
Thursday, April 16, 2009
Scientific News
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Detecting HIV Diagnostic Antibodies with DNA Nanomachines
New research may revolutionize the slow, cumbersome and expensive process of detecting the antibodies that can help with the diagnosis of infectious and auto-immune diseases such as rheumatoid arthritis and HIV.
Snapshot Turns T Cell Immunology on its Head
New research may have implications for 1 diabetes sufferers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
New Approach to Treating Heparin-induced Blood Disorder
A potential treatment for a serious clotting condition that can strike patients who receive heparin to treat or prevent blood clots may lie within reach by elucidating the structure of the protein complex at its root.
Horse Illness Shares Signs of Human Disease
Horses with a rare nerve condition have similar signs of disease as people with conditions such as Alzheimer’s, a study has found.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos