Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Human Immune System Shapes Skin Microbiome

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Our skin plays host to millions of microorganisms; however, whether our immune system influences these microbial communities to prevent disease is unknown.

In a study published online in Genome Research, researchers have explored the microbes living on the skin of patients with primary immunodeficiencies with eczema-like skin conditions.

The human body contains many microbes, some of which are necessary for healthy bodily functions such as digestion. Others, such as some microbes living on our skin, may be pathogenic. Previous studies investigated how these microbes educate and shape the human immune system. There is little known, however, if the immune system influences the types of microbes that live on the skin and thus potentially prevents disease. "In addition to questions about how microbes affect the human host, there is an interest in understanding how the human host affects the microbes that make our skin their home," said Heidi Kong of the National Cancer Institute (NCI) and co-senior author of the study.

To study this, the authors enlisted patients with reduced immune function as a result of rare genetic defects.  Despite the diversity in disease-causing mutations in the patients, all patients shared an eczema-like skin condition. The scientists identified the microbes on the patients' skin by sequencing microbial DNA from skin swabs.  The immunodeficient patients had types of bacteria and fungi on their skin not found on healthy individuals, suggesting the patients' skin was more permissive to microbe growth.  "Our findings suggest that the human body, including our immune systems, constrains and potentially selects which bacteria and fungi can inhabit skin," said Kong.

Interestingly, the skin sites specifically prone to disease showed significant differences in microbial diversity, or the number of different types of microbes present, in immundeficient patients.

 The skin at the elbow crease, for instance, had fewer types of microbes than found on healthy individuals, while skin behind the ear had more types of microbes. The authors suggest that an imbalance in microbial diversity at a given site may contribute to disease.  In addition, "the communities of bacteria and fungi on the skin of primary immunodeficiency patients are more likely to change over time," said co-senior author Julie Segre, of the National Human Genome Research Institute (NHGRI).

Immunodeficient patients overall had much more similar microbial communities across their entire bodies, which are usually distinct in healthy individuals. The authors suggest that by correcting the diversity of microbes on the skin, not just targeting pathogenic ones, may aid in the treatment of disease.

Although the individuals in this study have rare genetic disorders, this research may have implications for patients with temporary impairments in immune function, such as cancer patients and transplant recipients, and may inform the use of preventative antibiotics that are routinely given to these patients.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
Diagnostic Test Developed for Enterovirus D68
researchers at Washington University School of Medicine in St. Louis have developed a diagnostic test to quickly detect enterovirus D68 (EV-D68), a respiratory virus that caused unusually severe illness in children last year.
How a Kernel Got Naked and Corn Became King
Ten thousand years ago, a golden grain got naked, brought people together and grew to become one of the top agricultural commodities on the planet.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!