Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Scientists Develop Candidate Vaccine Against Respiratory Syncytial Virus

Published: Friday, November 01, 2013
Last Updated: Friday, November 01, 2013
Bookmark and Share
Structure-based design may be key to successful vaccine for common childhood illness.

An experimental vaccine to protect against respiratory syncytial virus (RSV) elicited high levels of RSV-specific antibodies when tested in animals, according to a report in the journal Science.

Early-stage human clinical trials of the candidate vaccine are planned. Scientists from the Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, built on their previous findings about the structure of a critical viral protein to design the vaccine. The team was led by Peter D. Kwong, Ph.D., and Barney S. Graham, M.D., Ph.D.

The respiratory syncytial virus (RSV) is responsible for a common childhood illness. There is no vaccine available to prevent RSV infection.

In the United States, RSV infection is the most common cause of bronchiolitis (inflammation of small airways in the lungs) and pneumonia in children less than one year old and the most common cause for hospitalization in children under five.

Worldwide, it is estimated that RSV is responsible for nearly 7 percent of deaths in babies aged 1 month to 1 year; only malaria kills more children in this age group. Others at risk for severe disease following RSV infection include adults over age 65 and those with compromised immune systems.

"Many common diseases of childhood are now vaccine-preventable, but a vaccine against RSV infection has eluded us for decades," said NIAID Director Anthony S. Fauci, M.D. "This work marks a major step forward. Not only does the experimental vaccine developed by our scientists elicit strong RSV-neutralizing activity in animals, but, more broadly, this technique of using structural information to inform vaccine design is being applied to other viral diseases, including HIV/AIDS."

Earlier this year, the VRC team obtained atomic-level details (http://www.niaid.nih.gov/news/newsreleases/2013/Pages/RSV.aspx) of an RSV protein - called the fusion (F) glycoprotein - bound to a broadly neutralizing human RSV antibody. The protein-antibody complex gave scientists their first look at the F glycoprotein as it appears before it fuses with a human cell.

In this pre-fusion shape, F glycoprotein contains a region vulnerable to attack by broadly neutralizing antibodies (antibodies able to block infection from the common strains of RSV).

Once RSV fuses with a cell, this vulnerable area, named antigenic site zero by the researchers, is no longer present on the rearranged F protein. In natural RSV infection, the immune system produces antibodies against both the pre-fusion and post-fusion forms of F glycoprotein.

But the antibodies to antigenic site zero, which is only present on the pre-fusion form, have much stronger neutralizing activity. Therefore, a vaccine against RSV would have greater chance of success by eliciting antibodies directed at F glycoprotein in its pre-fusion configuration.

In their current publication, Drs. Kwong and Graham describe how they used this structural information to design and engineer F glycoprotein variants that retained antigenic site zero even when no antibody was bound to it.

The goal was to create stable variants that could serve as the foundation for a vaccine capable of eliciting a potent antibody response. The researchers designed more than 100 variants; of these, three were shown by X-ray crystallography to retain the desired structure. The engineered variants were then used as vaccines in a series of experiments in mice and rhesus macaques.

In mice and macaques, the researchers found that the more stable the protein, the higher the levels of neutralizing antibodies elicited by vaccination. The levels of antibody made in response to one of the engineered F glycoproteins were more than 10 times higher than those produced following vaccination with post-fusion F glycoprotein and well above levels needed to protect against RSV infection.

"Here is a case in which information gained from structural biology has provided the insight needed to solve an immunological puzzle and apply the findings to address a real-world public health problem," said Dr. Graham.

He and the VRC scientists are continuing to refine the engineered F glycoproteins and hope to launch early-stage human clinical trials of a candidate RSV vaccine as soon as clinical grade material can be manufactured, a process that takes about 18 to 24 months.

"Previously, structure-based vaccine design held promise at a conceptual level," said Dr. Kwong. "This advance delivers on that promise and sets the stage for similar applications of structure-guided design to effective vaccines against other pathogens."

Dr. Fauci added, "This latest advance underscores the advantages of the VRC's organizational design, where experts in RSV virology, vaccinology and clinical studies, such as Dr. Graham, are in daily contact with Dr. Kwong and others who are experts in structural biology. Such close collaboration across disciplines allows for rapid testing of new approaches to a given problem."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Grants Seek Best Ways To Combine Genomic Information and EHRs
Researchers seek to better understand genomic basis of disease, provide tailored care to patients.
Friday, September 04, 2015
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Wednesday, September 02, 2015
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Tuesday, September 01, 2015
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Thursday, August 27, 2015
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Thursday, August 27, 2015
In Uveitis, Bacteria in Gut May Instruct Immune Cells to Attack the Eye
NIH scientists propose novel mechanism to explain autoimmune uveitis.
Wednesday, August 19, 2015
Novel Mechanism to Explain Autoimmune Uveitis Proposed
A new study on mice suggests that bacteria in the gut may provide a kind of training ground for immune cells to attack the eye.
Wednesday, August 19, 2015
Large Percentage of Youth with HIV May Lack Immunity to Measles, Mumps, Rubella
NIH study finds those vaccinated before starting modern HIV therapy may be at risk.
Tuesday, August 18, 2015
Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Scientists Uncover Nuclear Process in the Brain that May Affect Disease
NIH-funded study highlights the possible role of glial brain cells in neurological disorders.
Tuesday, August 18, 2015
Newly Discovered Cells Restore Liver Damage in Mice Without Cancer Risk
The liver is unique among organs in its ability to regenerate after being damaged. Exactly how it repairs itself remained a mystery until recently, when researchers supported by the NIH discovered a type of cell in mice essential to the process
Monday, August 17, 2015
Study Finds Cutting Dietary Fat Reduces Body Fat More than Cutting Carbs
In a recent study, restricting dietary fat led to body fat loss at a rate 68 percent higher than cutting the same number of carbohydrate calories when adults with obesity ate strictly controlled diets.
Friday, August 14, 2015
Inappropriate Medical Food Use in Managing Patients with a Type of Metabolic Disorder
Researchers have proposed that there is a need for more rigorous clinical study of dietary management practices for patients with IEMs, including any associated long-term side effects, which may in turn result in the need to reformulate some medical foods.
Friday, August 14, 2015
PINK1 Protein Crucial for Removing Broken-Down Energy Reactors
NIH study suggests potential new pathway to target for treating ALS and other diseases.
Thursday, August 13, 2015
Scientific News
Health Risks of Saturated Fats Aggravated by Immune Response
Research shows that the presence of saturated fats resulted in monocytes migrating into the tissues of vital organs.
Changing the Biological Data Visualisation World
Scientists at TGAC, alongside European partners, have created a cutting-edge, open source community for the life sciences.
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!