Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A New Way to Monitor Induced Comas

Published: Friday, November 01, 2013
Last Updated: Friday, November 01, 2013
Bookmark and Share
Automated system could offer better control of patients’ brain states.

After suffering a traumatic brain injury, patients are often placed in a coma to give the brain time to heal and allow dangerous swelling to dissipate. These comas, which are induced with anesthesia drugs, can last for days. During that time, nurses must closely monitor patients to make sure their brains are at the right level of sedation — a process that MIT’s Emery Brown describes as “totally inefficient.”

“Someone has to be constantly coming back and checking on the patient, so that you can hold the brain in a fixed state. Why not build a controller to do that?” says Brown, the Edward Hood Taplin Professor of Medical Engineering in MIT’s Institute for Medical Engineering and Science, who is also an anesthesiologist at Massachusetts General Hospital (MGH) and a professor of health sciences and technology at MIT.

Brown and colleagues at MGH have now developed a computerized system that can track patients’ brain activity and automatically adjust drug dosages to maintain the correct state. They have tested the system  — which could also help patients who suffer from severe epileptic seizures — in rats and are now planning to begin human trials. 

Maryam Shanechi, a former MIT grad student who is now an assistant professor at Cornell University, is the lead author of the paper describing the computerized system in the XXX issue of the journal PLoS Computational Biology.

Tracking the brain
Brown and his colleagues have previously analyzed the electrical waves produced by the brain in different states of activity. Each state — awake, asleep, sedated, anesthetized and so on — has a distinctive electroencephalogram (EEG) pattern.

When patients are in a medically induced coma, the brain is quiet for up to several seconds at a time, punctuated by short bursts of activity. This pattern, known as burst suppression, allows the brain to conserve vital energy during times of trauma. 

As a patient enters an induced coma, the doctor or nurse controlling the infusion of anesthesia drugs tries to aim for a particular number of “bursts per screen” as the EEG pattern streams across the monitor. This pattern has to be maintained for hours or days at a time.

“If ever there were a time to try to build an autopilot, this is the perfect time,” says Brown, who is a professor in MIT’s Department of Brain and Cognitive Sciences. “Imagine that you’re going to fly for two days and I’m going to give you a very specific course to maintain over long periods of time, but I still want you to keep your hand on the stick to fly the plane. It just wouldn’t make sense.”

To achieve automated control, Brown and colleagues built a brain-machine interface — a direct communication pathway between the brain and an external device that typically assists human cognitive, sensory or motor functions. In this case, the device — an EEG system, a drug-infusion pump, a computer and a control algorithm — uses the anesthesia drug propofol to maintain the brain at a target level of burst suppression. 

The system is a feedback loop that adjusts the drug dosage in real time based on EEG burst-suppression patterns. The control algorithm interprets the rat’s EEG, calculates how much drug is in the brain, and adjusts the amount of propofol infused into the animal second-by-second.

The controller can increase the depth of a coma almost instantaneously, which would be impossible for a human to do accurately by hand. The system could also be programmed to bring a patient out of an induced coma periodically so doctors could perform neurological tests, Brown says.

This type of system could take much of the guesswork out of patient care, says Sydney Cash, an associate professor of neurology at Harvard Medical School.

“Much of what we do in medicine is making educated guesses as to what’s best for the patient at any given time,” says Cash, who was not part of the research team. “This approach introduces a methodology where doctors and nurses don’t need to guess, but can rely on a computer to figure out — in much more detail and in a time-efficient fashion — how much drug to give.”

Monitoring anesthesia
Brown believes that this approach could easily be extended to control other brain states, including general anesthesia, because each level of brain activity has its own distinctive EEG signature.

“If you can quantitatively analyze each state’s signature in real time and you have some notion of how the drug moves through the brain to generate those states, then you can build a controller,” he says.

There are currently no devices approved by the U.S. Food and Drug Administration (FDA) to control general anesthesia or induced coma, but there is a device available in Europe and South America, based on an algorithm that uses the patient’s EEG to compute an index on a 100-point scale. However, that system keeps the patient’s brain activity within a very wide range and does not allow for precise control, Brown says. 

The MIT and MGH researchers are now preparing applications to the FDA to test the controller in humans. 

The research was funded by the National Institutes of Health through a Pioneer Award and a Transformative Research Award.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Method for Analyzing Crystal Structure
Exotic materials called photonic crystals reveal their internal characteristics with new method.
Monday, November 28, 2016
Biomarker Guiding Cancer Therapy
Biologists link levels of Mena protein to breast cancer cells’ sensitivity to chemotherapy.
Tuesday, November 22, 2016
Capsule Achieves Long-Term Drug Delivery
Novel drug delivery method could aid in elimination of malaria and treatment of many other diseases.
Monday, November 21, 2016
Synthetic Cells Isolate Genetic Circuits
Encapsulating molecular components in artificial membranes offers more flexibility in designing circuits.
Tuesday, November 15, 2016
Turning Greenhouse Gas into Gasoline
New catalyst provides design principles for producing fuels from carbon dioxide emissions.
Tuesday, November 15, 2016
New Approach Against Salmonella
Researchers have developed a strategy to immunize against microbes that invade the gastrointestinal tract, including Salmonella.
Tuesday, November 08, 2016
Laser Particles Could Provide Sharper Tissue Images
New imaging technique stimulates particles to emit laser light, could create higher-resolution images.
Tuesday, November 08, 2016
Engineers Design New Weapon Against Bacteria
Researchers have successfully engineered antimicrobial peptides that can kill bacterial strains resistant to existing antibiotics.
Thursday, November 03, 2016
Predicting Cancer Cells’ Response to Chemotherapy
Researcher develop method for testing cell ability to perform different types of DNA repair, which can reveal tumors’ sensitivity to drugs.
Wednesday, November 02, 2016
Nanobionic Spinach Detects Dangerous Chemicals
Scientists have changed spinach plants into biosensors that can detect harful chemicals and wirelessly relay the information.
Tuesday, November 01, 2016
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
Friday, October 28, 2016
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Tuesday, October 25, 2016
MRIs for Fetal Health
Algorithm could help analyze fetal scans to determine whether interventions are warranted.
Monday, October 24, 2016
Mapping Serotonin in the Living Brain
Imaging technique that creates a 3D video of serotonin transport could aid antidepressant development.
Monday, October 24, 2016
Achieving “Green” Desalination
Workshop explores ways to reduce or eliminate the carbon footprint of seawater desalination plants.
Thursday, October 20, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Making Personalized Medicine a Reality
Groundbreaking technique developed at McMaster University is helping to pave the way for advances in personalized medicine.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
Possible Treatment for Rare Vascular Disease
Researchers manage to reverse hereditary haemorrhagic telangiectasia in mice, if successful in humans it could lead to improved treatment for the disease.
Sweet Tooth Science - Chocolate Antioxidants
Researchers develop a faster and cheaper method to test for antioxidants in chocolate.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!