Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A New Way to Monitor Induced Comas

Published: Friday, November 01, 2013
Last Updated: Friday, November 01, 2013
Bookmark and Share
Automated system could offer better control of patients’ brain states.

After suffering a traumatic brain injury, patients are often placed in a coma to give the brain time to heal and allow dangerous swelling to dissipate. These comas, which are induced with anesthesia drugs, can last for days. During that time, nurses must closely monitor patients to make sure their brains are at the right level of sedation — a process that MIT’s Emery Brown describes as “totally inefficient.”

“Someone has to be constantly coming back and checking on the patient, so that you can hold the brain in a fixed state. Why not build a controller to do that?” says Brown, the Edward Hood Taplin Professor of Medical Engineering in MIT’s Institute for Medical Engineering and Science, who is also an anesthesiologist at Massachusetts General Hospital (MGH) and a professor of health sciences and technology at MIT.

Brown and colleagues at MGH have now developed a computerized system that can track patients’ brain activity and automatically adjust drug dosages to maintain the correct state. They have tested the system  — which could also help patients who suffer from severe epileptic seizures — in rats and are now planning to begin human trials. 

Maryam Shanechi, a former MIT grad student who is now an assistant professor at Cornell University, is the lead author of the paper describing the computerized system in the XXX issue of the journal PLoS Computational Biology.

Tracking the brain
Brown and his colleagues have previously analyzed the electrical waves produced by the brain in different states of activity. Each state — awake, asleep, sedated, anesthetized and so on — has a distinctive electroencephalogram (EEG) pattern.

When patients are in a medically induced coma, the brain is quiet for up to several seconds at a time, punctuated by short bursts of activity. This pattern, known as burst suppression, allows the brain to conserve vital energy during times of trauma. 

As a patient enters an induced coma, the doctor or nurse controlling the infusion of anesthesia drugs tries to aim for a particular number of “bursts per screen” as the EEG pattern streams across the monitor. This pattern has to be maintained for hours or days at a time.

“If ever there were a time to try to build an autopilot, this is the perfect time,” says Brown, who is a professor in MIT’s Department of Brain and Cognitive Sciences. “Imagine that you’re going to fly for two days and I’m going to give you a very specific course to maintain over long periods of time, but I still want you to keep your hand on the stick to fly the plane. It just wouldn’t make sense.”

To achieve automated control, Brown and colleagues built a brain-machine interface — a direct communication pathway between the brain and an external device that typically assists human cognitive, sensory or motor functions. In this case, the device — an EEG system, a drug-infusion pump, a computer and a control algorithm — uses the anesthesia drug propofol to maintain the brain at a target level of burst suppression. 

The system is a feedback loop that adjusts the drug dosage in real time based on EEG burst-suppression patterns. The control algorithm interprets the rat’s EEG, calculates how much drug is in the brain, and adjusts the amount of propofol infused into the animal second-by-second.

The controller can increase the depth of a coma almost instantaneously, which would be impossible for a human to do accurately by hand. The system could also be programmed to bring a patient out of an induced coma periodically so doctors could perform neurological tests, Brown says.

This type of system could take much of the guesswork out of patient care, says Sydney Cash, an associate professor of neurology at Harvard Medical School.

“Much of what we do in medicine is making educated guesses as to what’s best for the patient at any given time,” says Cash, who was not part of the research team. “This approach introduces a methodology where doctors and nurses don’t need to guess, but can rely on a computer to figure out — in much more detail and in a time-efficient fashion — how much drug to give.”

Monitoring anesthesia
Brown believes that this approach could easily be extended to control other brain states, including general anesthesia, because each level of brain activity has its own distinctive EEG signature.

“If you can quantitatively analyze each state’s signature in real time and you have some notion of how the drug moves through the brain to generate those states, then you can build a controller,” he says.

There are currently no devices approved by the U.S. Food and Drug Administration (FDA) to control general anesthesia or induced coma, but there is a device available in Europe and South America, based on an algorithm that uses the patient’s EEG to compute an index on a 100-point scale. However, that system keeps the patient’s brain activity within a very wide range and does not allow for precise control, Brown says. 

The MIT and MGH researchers are now preparing applications to the FDA to test the controller in humans. 

The research was funded by the National Institutes of Health through a Pioneer Award and a Transformative Research Award.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
Thursday, September 15, 2016
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
Thursday, September 15, 2016
Linking RNA Structure and Function
Biologists have deciphered a lncRNA structure and used the information to investigate its cellular protein interactions.
Friday, September 09, 2016
Hacking Microbes
Startup’s engineered yeast helps clients produce fragrances and flavors more efficiently.
Thursday, September 08, 2016
Guided Needles Hit the Mark
New sensor could help anesthesiologists place needles for epidurals and other medical procedures.
Thursday, September 08, 2016
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Wednesday, September 07, 2016
Targeting Neglected Diseases
New enzyme-mapping advancement could help drug development for combating diseases in the developing world.
Wednesday, August 17, 2016
Protecting Privacy in Genomic Databases
System helps ensure databases used in medical research will not leak patients’ personal information.
Wednesday, August 10, 2016
Biopharmaceuticals on Demand
Portable production system would use microbes for manufacturing small amounts of vaccines and therapeutics.
Monday, August 01, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
Ancient Eggshell Protein Breaks Through DNA Time Barrier
Fossil proteins from a 3.8million year-old eggshell have been identifed, suggests proteins could give insight into evolutionary tree.
Monkeys Protected by Zika DNA Vaccine
Experimental Zika virus DNA vaccines successfully protected monkeys against Zika infection.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
New Imaging Technique in Alzheimer’s Disease
Study confirms new imaging technique corresponds a higher degree of actual brain changes.
Anti-Inflammatory Drugs Could Strengthen Airway Immunity
Mold toxins can weaken the airways' clearing mechanisms and immunity, but PKC inhibitors showed promise as a treatment.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!