Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Epigenetic Clock Marks Age of Human Tissues and Cells

Published: Tuesday, November 05, 2013
Last Updated: Tuesday, November 05, 2013
Bookmark and Share
The age of many human tissues and cells is reflected in chemical changes to DNA. The finding provides insights for cancer, aging, and stem cell research.

We may gauge how we’re aging based on visible changes, such as wrinkles. For years, scientists have been trying to gauge aging based on changes inside our cells.

Many alterations occur to our DNA as we age. Some of these changes are epigenetic—they modify DNA without altering the genetic sequence itself. These changes affect how cells in different parts of the body use the same genetic code. By controlling when specific genes are turned on and off, or “expressed,” they tell cells what to do, where to do it, and when to do it.

One such type of modification occurs when chemical tags known as methyl groups attach to DNA in specific places. This process, known as methylation, affects interactions between DNA and protein-making machinery. Changes in DNA methylation—both increases and decreases—occur with aging.

Dr. Steve Horvath from the University of California, Los Angeles, examined the relationship between DNA methylation and aging. He took advantage of publicly available methylation datasets, including ones from The Cancer Genome Atlas, a joint effort of NIH’s National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI). The datasets were developed by hundreds of researchers and comprised almost 8,000 samples of 51 healthy tissues and cell types. Samples came from people ranging in age from newborns to 101 years. They included tissues from throughout the body, including the brain, breast, skin, colon, kidney, liver, lung, and heart.

Horvath first developed an age predictor using 39 datasets. The tool was based on 353 specific DNA sites where methyl groups increased or decreased with age. He then tested the predictor in 32 additional datasets. Results appeared in the October 21, 2013, issue of Genome Biology.

Horvath found that the computed biological age based on DNA methylation closely predicted the chronological age of numerous tissues and cells to within just a few years. There were some tissues, however, where the biological age did not match the chronological age. These included skeletal muscle, heart tissue, and breast tissue. The clock also worked well in chimpanzees.

In both embryonic and induced pluripotent stem cells—genetically altered adult cells with characteristics of embryonic stem cells—the DNA methylation age proved to be near zero.

Horvath also analyzed nearly 6,000 samples from 20 different cancers and found that cancer greatly affected DNA methylation age. However, in most cancers the age acceleration didn’t reflect the tumor grade and stage.

The rate of ticking of the biological clock, as measured by the rates of change in DNA methylation, wasn’t constant. It was faster from birth to adulthood, and then slowed to a constant rate around the age of 20.

Horvath didn’t find evidence of a relationship with DNA methylation age in B cells (a type of white blood cell) from people with a premature aging disease (progeria).

“Pinpointing a set of biomarkers that keeps time throughout the body has been a 4-year challenge,” Horvath says. “My goal in inventing this age-predictive tool is to help scientists improve their understanding of what speeds up and slows down the human aging process.”

UCLA has filed a provisional patent on the age-predictive tool, which is freely available to scientists online. Horvath plans to examine whether DNA methylation is only a marker of aging or itself affects aging.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Friday, July 31, 2015
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
Young South African Women can Adhere to Daily PrEP Regimen as HIV Prevention
NIH-funded study finds men in Bangkok, Harlem also successful in taking daily dose.
Saturday, July 25, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Early Antiretroviral Therapy Prevents Non-AIDS Outcomes in HIV-infected People
NIH-supported findings illustrate manifold benefit of therapy.
Tuesday, July 21, 2015
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Saturday, July 18, 2015
House Votes in Favor of Bill Boosting NIH Funding
The US House of Representatives today overwhelmingly voted in favor of a bill that would increase funding to the NIH by about $10 billion, help speed the development of new drugs, and advance precision medicine initiatives.
Monday, July 13, 2015
NIH-funded Vaccine for West Nile Virus Enters Human Clinical Trials
Enrollment is expected to be completed by December 2015.
Tuesday, July 07, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Boys More Likely to Have Antipsychotics Prescribed, Regardless of Age
NIH-funded study is the first look at antipsychotic prescriptions patterns in the U.S.
Thursday, July 02, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
New Medication for Alcohol Use Disorder
NIH begins clinical trial investigating a potential treatment for alcohol use disorder.
Friday, June 26, 2015
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!