Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Epigenetic Clock Marks Age of Human Tissues and Cells

Published: Tuesday, November 05, 2013
Last Updated: Tuesday, November 05, 2013
Bookmark and Share
The age of many human tissues and cells is reflected in chemical changes to DNA. The finding provides insights for cancer, aging, and stem cell research.

We may gauge how we’re aging based on visible changes, such as wrinkles. For years, scientists have been trying to gauge aging based on changes inside our cells.

Many alterations occur to our DNA as we age. Some of these changes are epigenetic—they modify DNA without altering the genetic sequence itself. These changes affect how cells in different parts of the body use the same genetic code. By controlling when specific genes are turned on and off, or “expressed,” they tell cells what to do, where to do it, and when to do it.

One such type of modification occurs when chemical tags known as methyl groups attach to DNA in specific places. This process, known as methylation, affects interactions between DNA and protein-making machinery. Changes in DNA methylation—both increases and decreases—occur with aging.

Dr. Steve Horvath from the University of California, Los Angeles, examined the relationship between DNA methylation and aging. He took advantage of publicly available methylation datasets, including ones from The Cancer Genome Atlas, a joint effort of NIH’s National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI). The datasets were developed by hundreds of researchers and comprised almost 8,000 samples of 51 healthy tissues and cell types. Samples came from people ranging in age from newborns to 101 years. They included tissues from throughout the body, including the brain, breast, skin, colon, kidney, liver, lung, and heart.

Horvath first developed an age predictor using 39 datasets. The tool was based on 353 specific DNA sites where methyl groups increased or decreased with age. He then tested the predictor in 32 additional datasets. Results appeared in the October 21, 2013, issue of Genome Biology.

Horvath found that the computed biological age based on DNA methylation closely predicted the chronological age of numerous tissues and cells to within just a few years. There were some tissues, however, where the biological age did not match the chronological age. These included skeletal muscle, heart tissue, and breast tissue. The clock also worked well in chimpanzees.

In both embryonic and induced pluripotent stem cells—genetically altered adult cells with characteristics of embryonic stem cells—the DNA methylation age proved to be near zero.

Horvath also analyzed nearly 6,000 samples from 20 different cancers and found that cancer greatly affected DNA methylation age. However, in most cancers the age acceleration didn’t reflect the tumor grade and stage.

The rate of ticking of the biological clock, as measured by the rates of change in DNA methylation, wasn’t constant. It was faster from birth to adulthood, and then slowed to a constant rate around the age of 20.

Horvath didn’t find evidence of a relationship with DNA methylation age in B cells (a type of white blood cell) from people with a premature aging disease (progeria).

“Pinpointing a set of biomarkers that keeps time throughout the body has been a 4-year challenge,” Horvath says. “My goal in inventing this age-predictive tool is to help scientists improve their understanding of what speeds up and slows down the human aging process.”

UCLA has filed a provisional patent on the age-predictive tool, which is freely available to scientists online. Horvath plans to examine whether DNA methylation is only a marker of aging or itself affects aging.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Friday, February 05, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Friday, January 15, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
Wednesday, January 13, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
Researchers Investigate How a Developing Brain is Assembled
NIH 3-D software tracks worm embryo's brain development.
Tuesday, December 08, 2015
Scientific News
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Protein Protects Against Flu in Mice
The engineered molecule doesn’t provoke inflammation and may hail a new class of antivirals.
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Natural Protein Points to New Inflammation Treatment
Findings may offer insight to effective treatments for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!