Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Quantity, Not Just Quality, in New Stanford Brain Scan Method

Published: Wednesday, November 06, 2013
Last Updated: Wednesday, November 06, 2013
Bookmark and Share
Researchers used magnetic resonance imaging to quantify brain tissue volume, a critical measurement of the progression of multiple sclerosis and other diseases.

Imagine that your mechanic tells you that your brake pads seem thin, but doesn't know how long they will last. Or that your doctor says your child has a temperature, but isn't sure how high. Quantitative measurements help us make important decisions, especially in the doctor's office. But a potent and popular diagnostic scan, magnetic resonance imaging (MRI), provides mostly qualitative information.

An interdisciplinary Stanford team has now developed a new method for quantitatively measuring human brain tissue using MRI. The team members measured the volume of large molecules (macromolecules) within each cubic millimeter of the brain. Their method may change the way doctors diagnose and treat neurological diseases such as multiple sclerosis.

"We're moving from qualitative – saying something is off – to measuring how off it is," said Aviv Mezer, postdoctoral scholar in psychology. The team's work, funded by research grants from the National Institutes of Health, appears in the journal Nature Medicine.

Mezer, whose background is in biophysics, found inspiration in seemingly unrelated basic research from the 1980s. In theory, he read, magnetic resonance could quantitatively discriminate between different types of tissues.

"Do the right modifications to make it applicable to humans," he said of adapting the previous work, "and you've got a new diagnostic."

Previous quantitative MRI measurements required uncomfortably long scan times. Mezer and psychology Professor Brian Wandell unearthed a faster scanning technique, albeit one noted for its lack of consistency.

"Now we've found a way to make the fast method reliable," Mezer said.

Mezer and Wandell, working with neuroscientists, radiologists and chemical engineers, calibrated their method with a physical model – a radiological "phantom" – filled with agar gel and cholesterol to mimic brain tissue in MRI scans.

The team used one of Stanford's own MRI machines, located in the Center for Cognitive and Neurobiological Imaging, or CNI. Wandell directs the two-year-old center. Most psychologists, he said, don't have that level of direct access to their MRI equipment.

"Usually there are many people between you and the instrument itself," Wandell said.
This study wouldn't have happened, Mezer said, without the close proximity and open access to the instrumentation in the CNI.

Their results provided a new way to look at a living brain.

MRI images of the brain are made of many "voxels," or three-dimensional elements. Each voxel represents the signal from a small volume of the brain, much like a pixel represents a small volume of an image. The fraction of each voxel filled with brain tissue (as opposed to water) is called the macromolecular tissue volume, or MTV. Different areas of the brain have different MTVs. Mezer found that his MRI method produced MTV values in agreement with measurements that, until now, could only come from post-mortem brain specimens.

This is a useful first measurement, Mezer said. "The MTV is the most basic entity of the structure. It's what the tissue is made of."

The team applied its method to a group of multiple sclerosis patients. MS attacks a layer of cells called the myelin sheath, which protects neurons the same way insulation protects a wire. Until now, doctors typically used qualitative MRI scans (displaying bright or dark lesions) or behavioral tests to assess the disease's progression.

Myelin comprises most of the volume of the brain's "white matter," the core of the brain. As MS erodes myelin, the MTV of the white matter changes. Just as predicted, Mezer and Wandell found that MS patients' white matter tissue volumes were significantly lower than those of healthy volunteers. Mezer and colleagues at Stanford School of Medicine are now following up with the patients to evaluate the effect of MS drug therapies. They're using MTV values to track individual brain tissue changes over time.

The team's results were consistent among five MRI machines.

Mezer and Wandell will next use MRI measurements to monitor brain development in children, particularly as the children learn to read. Wandell's previous work mapped the neural connections involved in learning to read. MRI scans can measure how those connections form.

"You can compare whether the circuits are developing within specified limits for typical children," Wandell said, "or whether there are circuits that are wildly out of spec, and we ought to look into other ways to help the child learn to read."

Tracking MTV, the team said, helps doctors better compare patients' brains to the general population – or to their own history – giving them a chance to act before it's too late.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Friday, October 09, 2015
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Wednesday, October 07, 2015
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Monday, October 05, 2015
Drug Disarms Deadly C. difficile Bacteria Without Destroying Healthy Gut Flora
A drug that blocks the intestinal pathogen without killing resident, beneficial microbes may prove superior to antibiotics, currently the front-line treatment for the infection.
Friday, September 25, 2015
Virus Re-Engineered to Deliver Targeted Therapies
Researchers stripped a virus of its infectious machinery and turned its benign core into a delivery vehicle that can target sick cells while leaving healthy tissue alone.
Thursday, September 24, 2015
Combination Drug Therapy Shrinks Pancreatic Tumors In Mice
Two drugs that affect the structure and function of DNA have been found to block the growth of pancreatic tumor cells in mice, researchers hope the drugs can soon be tested in humans with the disease.
Thursday, September 24, 2015
Delivering Missing Protein Heals Damaged Hearts in Animals
Researchers have discovered that a particular protein, Fstl1, plays a key role in regenerating dead heart-muscle cells.
Tuesday, September 22, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
Drug Prevents Type 1 Diabetes In Mice
A compound that blocks the synthesis of hyaluronan, a substance generally found in in all body tissue, protected mice from getting Type 1 diabetes. The compound is already approved in Europe and Asia for the treatment of gallbladder disease.
Wednesday, September 16, 2015
New Method for Producing Vital Cancer Drug
Stanford scientists produced a common cancer drug – previously only available from an endangered plant – in a common laboratory plant.
Tuesday, September 15, 2015
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Monday, September 14, 2015
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Monday, August 24, 2015
Researchers Develop qPCR Prognosis Test for NSCLC Patients
A nine-gene molecular prognostic index (MPI) for patients with early-stage non-small cell lung cancer (NSCLC) was able to provide accurate survival stratification and could potentially inform the use of adjuvant therapy in patients struggling with the disease.
Thursday, August 20, 2015
Scientists Genetically Modify Yeast to Produce Opioids
The technique could improve access to medicines in impoverished nations, and later be used to develop treatments for other diseases.
Monday, August 17, 2015
Identifying Defective Heart Genes
A new technique could eventually enable doctors to diagnose genetic heart diseases by rapidly scanning more than 85 genes known to cause cardiac anomalies.
Thursday, August 13, 2015
Scientific News
Breaking Through the Barriers to Lab Innovation
Here we examine the drivers behind the move for greater innovation, the challenges and current trends in laboratory informatics, and the tools that can be used to break these barriers.
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
New Therapy Reduces Symptoms of Inherited Enzyme Deficiency
A phase three clinical trial of a new enzyme replacement medication, sebelipase alfa, showed a reduction in multiple disease-related symptoms in children and adults with lysosomal acid lipase deficiency, an inherited enzyme deficiency that can result in scarring of the liver and high cholesterol.
Adult High Blood Pressure Risk Identifiable in Childhood
Groups of people at risk of having high blood pressure and other related health issues by age 38 can be identified in childhood, new University of Otago research suggests.
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Supercoiled DNA is Far More Dynamic Than the “Watson-Crick” Double Helix
Researchers have imaged in unprecedented detail the three-dimensional structure of supercoiled DNA, revealing that its shape is much more dynamic than the well-known double helix.
Mini-kidneys Successfully Grown from Stem Cells
Researchers from Murdoch Childrens Research Institute have perfected a method of turning stem cells into mini-kidneys for use in drug screening, disease modelling and cell therapy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos