Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Quantity, Not Just Quality, in New Stanford Brain Scan Method

Published: Wednesday, November 06, 2013
Last Updated: Wednesday, November 06, 2013
Bookmark and Share
Researchers used magnetic resonance imaging to quantify brain tissue volume, a critical measurement of the progression of multiple sclerosis and other diseases.

Imagine that your mechanic tells you that your brake pads seem thin, but doesn't know how long they will last. Or that your doctor says your child has a temperature, but isn't sure how high. Quantitative measurements help us make important decisions, especially in the doctor's office. But a potent and popular diagnostic scan, magnetic resonance imaging (MRI), provides mostly qualitative information.

An interdisciplinary Stanford team has now developed a new method for quantitatively measuring human brain tissue using MRI. The team members measured the volume of large molecules (macromolecules) within each cubic millimeter of the brain. Their method may change the way doctors diagnose and treat neurological diseases such as multiple sclerosis.

"We're moving from qualitative – saying something is off – to measuring how off it is," said Aviv Mezer, postdoctoral scholar in psychology. The team's work, funded by research grants from the National Institutes of Health, appears in the journal Nature Medicine.

Mezer, whose background is in biophysics, found inspiration in seemingly unrelated basic research from the 1980s. In theory, he read, magnetic resonance could quantitatively discriminate between different types of tissues.

"Do the right modifications to make it applicable to humans," he said of adapting the previous work, "and you've got a new diagnostic."

Previous quantitative MRI measurements required uncomfortably long scan times. Mezer and psychology Professor Brian Wandell unearthed a faster scanning technique, albeit one noted for its lack of consistency.

"Now we've found a way to make the fast method reliable," Mezer said.

Mezer and Wandell, working with neuroscientists, radiologists and chemical engineers, calibrated their method with a physical model – a radiological "phantom" – filled with agar gel and cholesterol to mimic brain tissue in MRI scans.

The team used one of Stanford's own MRI machines, located in the Center for Cognitive and Neurobiological Imaging, or CNI. Wandell directs the two-year-old center. Most psychologists, he said, don't have that level of direct access to their MRI equipment.

"Usually there are many people between you and the instrument itself," Wandell said.
This study wouldn't have happened, Mezer said, without the close proximity and open access to the instrumentation in the CNI.

Their results provided a new way to look at a living brain.

MRI images of the brain are made of many "voxels," or three-dimensional elements. Each voxel represents the signal from a small volume of the brain, much like a pixel represents a small volume of an image. The fraction of each voxel filled with brain tissue (as opposed to water) is called the macromolecular tissue volume, or MTV. Different areas of the brain have different MTVs. Mezer found that his MRI method produced MTV values in agreement with measurements that, until now, could only come from post-mortem brain specimens.

This is a useful first measurement, Mezer said. "The MTV is the most basic entity of the structure. It's what the tissue is made of."

The team applied its method to a group of multiple sclerosis patients. MS attacks a layer of cells called the myelin sheath, which protects neurons the same way insulation protects a wire. Until now, doctors typically used qualitative MRI scans (displaying bright or dark lesions) or behavioral tests to assess the disease's progression.

Myelin comprises most of the volume of the brain's "white matter," the core of the brain. As MS erodes myelin, the MTV of the white matter changes. Just as predicted, Mezer and Wandell found that MS patients' white matter tissue volumes were significantly lower than those of healthy volunteers. Mezer and colleagues at Stanford School of Medicine are now following up with the patients to evaluate the effect of MS drug therapies. They're using MTV values to track individual brain tissue changes over time.

The team's results were consistent among five MRI machines.

Mezer and Wandell will next use MRI measurements to monitor brain development in children, particularly as the children learn to read. Wandell's previous work mapped the neural connections involved in learning to read. MRI scans can measure how those connections form.

"You can compare whether the circuits are developing within specified limits for typical children," Wandell said, "or whether there are circuits that are wildly out of spec, and we ought to look into other ways to help the child learn to read."

Tracking MTV, the team said, helps doctors better compare patients' brains to the general population – or to their own history – giving them a chance to act before it's too late.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Flexible Gene Expression May Regulate Social Status
Scientists show how the selective expression of genes through epigenetics can regulate the social status of African cichlid fish.
Monday, January 11, 2016
World Forest Carbon Stocks Overestimated
Researchers with The Natural Capital Project show how fragmentation harms forests' ability to store carbon; more restoration is needed to reconnect forest patches.
Tuesday, January 05, 2016
U.S. Needs a New Approach for Governance of Risky Research
The United States needs better oversight of risky biological research to reduce the likelihood of a bioengineered super virus escaping from the lab or being deliberately unleashed, according three Stanford scholars.
Monday, January 04, 2016
Mapping the Mechanical Properties of Living Cells
Researchers have developed a new way to use atomic force microscopy to rapidly measure the mechanical properties of cells at the nanometer scale, an advance that could pave the way for better understanding immune disorders and cancer.
Monday, December 21, 2015
Viral Infections Leave a Signature on the Immune System
A test that queries the body’s own cells can distinguish a viral infection from a bacterial infection and could help doctors know when to use antibiotics.
Thursday, December 17, 2015
Novel Approach to Understanding Brain Function
Russell Poldrack scanned his brain to create the most detailed map of brain connectivity ever.
Monday, December 14, 2015
Accelerating Protein Evolution
A new tool enables researchers to test millions of mutated proteins in a matter of hours or days, speeding the search for new medicines, industrial enzymes and biosensors.
Monday, December 14, 2015
Blocking Dengue Fever Virus
By targeting fundamental cellular machinery, the antiviral approach developed in Judith Frydman's lab at Stanford could provide a roadmap to preventing infections that affect hundreds of millions of people every year.
Thursday, December 03, 2015
Gene Linked to Heart Failure
Researchers have identified a previously unknown association between heart function and the narcolepsy-linked orexin receptor pathway, a finding that could provide a promising direction for treatment research.
Wednesday, December 02, 2015
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Sleep Deprivation Affects Stem Cells, Reducing Transplant Efficiency
Although the research was done in mice, the findings have possible implications for bone marrow transplants, more properly called hematopoietic stem cell transplants, in humans.
Friday, October 16, 2015
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Friday, October 09, 2015
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Wednesday, October 07, 2015
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Monday, October 05, 2015
Scientific News
Head Injury Patients have Protein Clumps Associated with Alzheimer’s Disease
Scientists have revealed that protein clumps associated with Alzheimer's disease are also found in the brains of people who have had a head injury.
Exposure to Air Pollution 30 Years Ago Associated with Increased Risk of Death
Exposure to air pollution more than 30 years ago may still affect an individual's mortality risk today, according to new research from Imperial College London.
More Then 1 in 20 U.S. Children have Dizziness and Balance Problems
Researchers at NIH have found that girls have a higher prevalence of dizziness and balance problems compared to boys, 5.7 percent and 5.0 percent.
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Low-Cost, Portable NQR Spectroscopy
A researcher at Case Western Reserve University is developing a low-cost, portable prototype designed to detect tainted medicines and food supplements that otherwise can make their way to consumers. The technology can authenticate good medicines and supplements.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Spero Therapeutics Announces $30 Million Series B Preferred Financing
Company has announced financing of $30 million to support development of novel therapies to treat gram-negative bacterial infections.
Microdroplet Reactors Mimic Living Systems
Researchers use microdroplets to study non-equilibrium reactions like those in living organisms.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!