Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Did Inefficient Cellular Machinery Evolve to Fight Viruses and Jumping Genes?

Published: Monday, November 11, 2013
Last Updated: Monday, November 11, 2013
Bookmark and Share
UCSF scientist poses new theory on origins of eukaryotic gene expression.

It might seem obvious that humans are elegant and sophisticated beings in comparison to lowly bacteria. But when it comes to genes, a UC San Francisco scientist wants to turn conventional wisdom about human and bacterial evolution on its head.

Far from being sleekly performing and fine-tuned athletes, the molecules guiding the activity of our genes are like sour bureaucrats that clog up the works and create unnecessary inefficiency, asserts Hiten Madhani, MD, PhD, a professor of biochemistry and biophysics at UCSF. In contrast, bacteria carry out these processes efficiently with less frustration for the gene to express itself.

Madhani presented his viewpoint in an essay entitled “The Frustrated Gene: Origins of Eukaryotic Gene Expression,” published online Nov. 7 in the journal Cell.

Although his thinking was stimulated by his own research findings, Madhani described his Cell essay as a “just so” story, a conjecture that challenges conventional thinking, but that so far is without data to back it up.

He paraphrased a source of inspiration, the renowned scientist Sydney Brenner, who won a Nobel Prize for his own studies of gene regulation: “Biology is awash in a sea of data, but it needs new theories,” Madhani said.

Parasitic DNA May Be Driver of Eukaryotic Evolution

Most scientists believe that the complexity of the molecular mechanisms that guide the expression of genes and the production of proteins within a human cell is needed to allow for flexible responses that drive the development and maintenance of multifaceted organisms, Madhani said.

But he proposes that this complexity in genetic regulatory machinery did not originally evolve to allow for the development of the whole human. Instead, he suggested, complexity in gene expression might have first evolved in early eukaryotes to thwart infection by “parasitic DNA,” such as retroviruses, that would otherwise invade the cell nucleus and disrupt normal genes.

In contrast to humans, bacteria control their genes and have adaptively evolved in myriad ways without complex mechanisms like those that guide human gene expression. In fact, humans, whose cells number in the many trillions, and disease-causing bacteria, which are but a single cell, have been doing battle and evolving together for ages, with multidrug-resistant bacteria perhaps being latest type of villain to emerge in this epic struggle.

Bacteria have persisted despite their simplicity. They have only one gene-bearing chromosome and lack any kind of cell nucleus. The bacterial chromosome itself lacks the modifiable, protective sheath known as chromatin. Many other details of gene expression differ between human and bacterial cells. Bacteria are known as “prokaryotes,” a name that refers to the fact that they arose before cells evolved that had a nucleus – more than 3 billion years ago, according to some estimates made from fossils. Human cells have a nucleus and numerous other features that peg them as “eukaryotes.”

While humans evolved from apes just a few million years ago, eukaryotes have been around since the ancestors of single-celled yeast arose, perhaps 1.5 billion years ago – with the same complex features, Madhani said.

“It might be tempting to think that the complex attributes of human gene expression evolved to drive the evolution of complex, multicellular organisms,” Madhani said, “But the core elements of eukaryotic gene expression were established within the ancient unicellular progenitor of modern eukaryotes.” In other words, the early eukaryotic cell already was adapting to ward off parasitic DNA, he suggested.

Previous Lab Studies on Jumping Gene Nemesis

Madhani said his idea stems from research he published earlier this year. His research group discovered that a eukaryotic cellular machine known as SCANR plays a previously unrecognized role in thwarting corruption of the genome by parasitic DNA.

SCANR guards against DNA called jumping genes, or transposons, which long ago invaded the human genome. Transposons replicate multiple times, and insert themselves at random places within genomic DNA. When transposons insert themselves in the middle of an important gene, they may cause malfunction, disease or birth defects.

Madhani began thinking about how other mechanisms in the cell might similarly stymie certain viruses, which unlike bacterial pathogens, depend on the genetic machinery of their human hosts in order to replicate.

In addition to the chromatin that restricts access to DNA, eukaryotic cells also have embellishments to their RNA, and molecular inspectors that check to see that these eukaryotic modifications are present before protein production proceeds. The nucleus itself is gated to allow only certain molecules to get in and out. Many other eukaryotic cellular phenomena might have first evolved to defend against viruses and transposable elements, Madhani said.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children’s Hospital.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Thursday, December 08, 2016
RNA-Binding Proteins Role in ALS Revealed
Researchers describe how damage to RNA-binding protein contributes to ALS, isolating a possible therapeutic target.
Monday, October 24, 2016
Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Monday, October 24, 2016
Genome Sequencing May Help Avert Banana Armageddon
Researchers at the University of California, Davis, and in the Netherlands have discovered how three fungal diseases have evolved into a lethal threat to the world’s bananas.
Friday, August 12, 2016
‘Human-on-a-Chip’ Could Replace Animal Testing
Researchers are developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays.
Monday, June 13, 2016
Unveiling the Complexity of Mysterious Protein Folding
Imagine trying to reverse engineer a car when all you have is a finished product or a box full of parts — no instructions.
Wednesday, June 01, 2016
Study Identifies How Brain Connects Memories Across Time
UCLA Neuroscientists have boost ability of aging brain to recapture links between related memories.
Tuesday, May 31, 2016
Transcription Factor Isoforms Implicated in Colon Diseases
UC Riverside study explains how distribution of two forms of a transcription factor in the colon influence risk of disease.
Thursday, May 19, 2016
An E.coli Detector May be in Your Hands Soon
Hand-held device that can be used to detect a variety of pathogens—including foodborne pathogens like E. coli—at all stages in the food supply chain, from fields to restaurants may be available soon.
Monday, May 16, 2016
Fructose Alters Hundreds of Brain Genes
UCLA scientists report that diet rich in omega-3 fatty acids can reverse the damage.
Tuesday, April 26, 2016
Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Tracking RNA in Live Cells
Technique may open doors to new treatments for many conditions, from cancer to autism.
Friday, March 18, 2016
Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Forensic 3D Documentation of Skin Injuries
In this study, the validity of using photogrammetry for documenting injuries in a pathological context was demonstrated.
3-D Printed Dog’s Nose Improves Vapor Detection
By mimicking how dogs get their whiffs, a team of government and university researchers have demonstrated that “active sniffing” can improve by more than 10 times the performance of current technologies that rely on continuous suction to detect trace amounts of explosives and other contraband.
New Markers for Forensic Body-fluid Identification
University of Bonn researchers have successfully identified specific Micro-RNA signatures to help forensically identify body fluids.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!