Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Designer Piercings: New Membrane Pores with DNA Nanotechnology

Published: Tuesday, November 12, 2013
Last Updated: Tuesday, November 12, 2013
Bookmark and Share
A new way to build membrane-crossing pores, using Lego-like DNA building blocks, has been developed by scientists.

The approach provides a simple and low cost tool for synthetic biology and the technique has potential applications in diagnostic devices and drug discovery. The research is featured in the current issue of the journal Angewandte Chemie.

Membrane pores are the gateways controlling the transport of essential molecules across the otherwise impermeable membranes that surround cells in living organisms. Typically made from proteins, pores of different sizes control the flow of ions and molecules both in and out of the cell as part of an organism's metabolism.

Our understanding of membrane pores comes both from the study of both natural pores, and from equivalent structures built in the lab by synthetic biologists. But synthetic proteins are notoriously difficult to handle due to the complex and often unpredictable ways in which their structures can fold. Even minor protein misfolding changes a protein's properties, meaning that building synthetic pores out of proteins can be risky and time-consuming.

A more straightforward approach is so-called 'rational engineering' using Lego-like DNA building blocks. Although generally known as life's genetic code, DNA strands, which are chemically much simpler than proteins, are far easier and more predictable to work with than proteins. As such they are a useful material for building nanoscale structures in the lab.

"DNA is a construction material that follows very simple rules", said Dr Stefan Howorka (UCL Chemistry). "New nanostructures can be easily designed using a computer programme, and the elements fit together like Lego bricks. So we can build more or less whatever we like."

Using this approach, the team built a tiny tube measuring just 14 nanometres along and 5.5 nanometres across (around 10,000 times smaller than the width of a human hair). This formed the main part of their artificial nanopore. However, to insert the tube into a cell membrane, a key challenge had to be addressed: the water-soluble DNA-based structure will not embed itself into the greasy membrane which is composed of lipids.

To overcome this, the scientists chemically attached to the DNA tube two large anchors, made of molecules which have a natural affinity for lipids. These structures were then able to embed the tube into the membrane. These structures, which are based on naturally derived porphyrins, were designed by a group led by Dr Eugen Stulz (University of Southampton).

"Porphyrin molecules have ideal characteristics for our purposes," Stulz explains. "They are a strong membrane anchor, which locks the nanopore securely into the lipid membrane. In addition, they are fluorescent, which means they are easy to see and study. This makes them superior to other technologies."

The pores were characterised with electrical and fluorescence measurements in collaboration with Dr Ulrich Keyser (Cavendish Laboratory, Cambridge).

The simplicity of self-assembling a structure with only two anchors (previous studies used 26 or even 72 such anchors) greatly streamlines the design and synthesis of nanopores.

"In future, this new process will enable us to tailor DNA nanopores for a much wider range of applications than are currently possible," Keyser says.

The ability to create synthetic channels through lipid membranes enables numerous applications in the life sciences. In the first instance, DNA nanopores are of great interest for biosensing, such as rapid DNA analysis.

But tailored pores can also be expected to aid the development of new drugs. Prototype drugs are typically designed to affect a biological target, but are not engineered to cross the cell membrane. Self-assembled pores provide a route for drugs to pass into cells, allowing for much faster pre-clinical screening for activity.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Possible Evidence for Human Transmission of Alzheimer’s Pathology
Study suggests that under a particular set of circumstances, amyloid-ß may potentially be transmissible through certain medical procedures.
Friday, September 11, 2015
New Variant of Streptococcal Bacteria
Scientists have discovered a new variant of streptococcal bacteria that has contributed to a rise in disease cases in the UK over the last 17 years.
Wednesday, July 15, 2015
Smoking Signs
Research reveals epigenetic alterations caused by smoking.
Wednesday, May 20, 2015
New Biomarkers To Spot Pancreatic Cancer Early
A combination of two biomarkers can identify pre-clinical pancreatic cancer.
Thursday, February 05, 2015
Autolus Launches With £30m Investment
UCL cancer immunotherapy company, Autolus is launches to develop T-cell therapies for haematological and solid tumours.
Thursday, January 22, 2015
Raman Spectroscopy May Enable Non-Invasive Diagnosis of Bone Diseases
Detection of a genetic ‘brittle bone’ disease known as Osteogenesis Imperfecta (OI) is possible by simply scanning a patient’s limbs.
Wednesday, December 03, 2014
UCL Research Helps Paralyzed Man to Recover Function
UCL scientists develop a pioneering cell transplantation treatment.
Tuesday, October 28, 2014
Light-Activated Antimicrobial Surface Also Works in the Dark
The new antibacterial material, developed by researchers at UCL, has potential for cutting hospital acquired infections.
Tuesday, March 25, 2014
100,000 UK Volunteers Invited to Donate Genome to Science
The search for UK volunteers willing to donate their genome and health data to science has begun with the launch today of the Personal Genome Project UK.
Tuesday, November 12, 2013
New Director Named for Leading HIV Research Centre in South Africa
Professor Pillay will take up his post on secondment from UCL on 1 November 2013.
Wednesday, September 04, 2013
Scientists Transplant Photoreceptors from Retina Grown ‘In a Dish’
Study suggests that embryonic stem cells provide unlimited supply of healthy photoreceptors to treat blindness in humans.
Tuesday, July 23, 2013
How 'Obesity Gene' Triggers Weight Gain
Researchers have discovered why people with a variation of the FTO gene that affects one in six of the population are 70 per cent more likely to become obese.
Wednesday, July 17, 2013
'Chase and Run' Cell Movement Mechanism Explains Metastasis
A mechanism that cells use to group together and move around the body has been described for the first time by scientists at UCL.
Thursday, June 20, 2013
More Than Two Hundred Genes Identified for Crohn’s Disease
More than two hundred gene locations have now been identified for the chronic bowel condition Crohn's Disease, in a study that analysed the entire human genome.
Wednesday, December 19, 2012
Scientists Uncover Achilles Heel of Chronic Inflammatory Pain
BBSRC funded discovery could lead to a brand new class of drugs to treat chronic pain caused by inflammatory conditions.
Thursday, August 19, 2010
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Metabolomic Platform Reveals Fundamental Flaw in Common Lab Technology
A new study led by scientists at The Scripps Research Institute (TSRI) shows that a technology used in thousands of laboratories, called gas chromatography mass spectrometry (GC-MS), fundamentally alters the samples it analyzes.
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos