Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Designer Piercings: New Membrane Pores with DNA Nanotechnology

Published: Tuesday, November 12, 2013
Last Updated: Tuesday, November 12, 2013
Bookmark and Share
A new way to build membrane-crossing pores, using Lego-like DNA building blocks, has been developed by scientists.

The approach provides a simple and low cost tool for synthetic biology and the technique has potential applications in diagnostic devices and drug discovery. The research is featured in the current issue of the journal Angewandte Chemie.

Membrane pores are the gateways controlling the transport of essential molecules across the otherwise impermeable membranes that surround cells in living organisms. Typically made from proteins, pores of different sizes control the flow of ions and molecules both in and out of the cell as part of an organism's metabolism.

Our understanding of membrane pores comes both from the study of both natural pores, and from equivalent structures built in the lab by synthetic biologists. But synthetic proteins are notoriously difficult to handle due to the complex and often unpredictable ways in which their structures can fold. Even minor protein misfolding changes a protein's properties, meaning that building synthetic pores out of proteins can be risky and time-consuming.

A more straightforward approach is so-called 'rational engineering' using Lego-like DNA building blocks. Although generally known as life's genetic code, DNA strands, which are chemically much simpler than proteins, are far easier and more predictable to work with than proteins. As such they are a useful material for building nanoscale structures in the lab.

"DNA is a construction material that follows very simple rules", said Dr Stefan Howorka (UCL Chemistry). "New nanostructures can be easily designed using a computer programme, and the elements fit together like Lego bricks. So we can build more or less whatever we like."

Using this approach, the team built a tiny tube measuring just 14 nanometres along and 5.5 nanometres across (around 10,000 times smaller than the width of a human hair). This formed the main part of their artificial nanopore. However, to insert the tube into a cell membrane, a key challenge had to be addressed: the water-soluble DNA-based structure will not embed itself into the greasy membrane which is composed of lipids.

To overcome this, the scientists chemically attached to the DNA tube two large anchors, made of molecules which have a natural affinity for lipids. These structures were then able to embed the tube into the membrane. These structures, which are based on naturally derived porphyrins, were designed by a group led by Dr Eugen Stulz (University of Southampton).

"Porphyrin molecules have ideal characteristics for our purposes," Stulz explains. "They are a strong membrane anchor, which locks the nanopore securely into the lipid membrane. In addition, they are fluorescent, which means they are easy to see and study. This makes them superior to other technologies."

The pores were characterised with electrical and fluorescence measurements in collaboration with Dr Ulrich Keyser (Cavendish Laboratory, Cambridge).

The simplicity of self-assembling a structure with only two anchors (previous studies used 26 or even 72 such anchors) greatly streamlines the design and synthesis of nanopores.

"In future, this new process will enable us to tailor DNA nanopores for a much wider range of applications than are currently possible," Keyser says.

The ability to create synthetic channels through lipid membranes enables numerous applications in the life sciences. In the first instance, DNA nanopores are of great interest for biosensing, such as rapid DNA analysis.

But tailored pores can also be expected to aid the development of new drugs. Prototype drugs are typically designed to affect a biological target, but are not engineered to cross the cell membrane. Self-assembled pores provide a route for drugs to pass into cells, allowing for much faster pre-clinical screening for activity.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Orchard Therapeutics Launched
UCL and F-Prime launch Orchard Therapeutics to treat rare childhood diseases.
Wednesday, May 04, 2016
Activating Cancer-Killing Immune Cells
A UCL research team have discovered that cutting off a sleep-switch on immune cells inside a tumour wakes up the cells and enables the immune system to hunt down and destroy cancer.
Tuesday, April 19, 2016
Cancer Drug Could Treat Blood Vessel Deformities
A drug currently being trialled in cancer patients could also be used to treat an often incurable condition that can cause painful blood vessel overgrowths inside the skin.
Monday, April 04, 2016
First Gene for Grey Hair Found
The first gene identified for greying hair has been discovered by an international UCL-led study, confirming greying has a genetic component and is not just environmental. - See more at: https://www.ucl.ac.uk/news/news-articles/0316/010316-first-grey-hair-gene-discovered#sthash.gD0shNNC.dpuf
Thursday, March 03, 2016
New Biomarker to Assess Stem Cells Developed
A research team led by scientists from UCL have found a way to assess the viability of 'manufactured' stem cells known as induced pluripotent stem cells (iPSCs). The team's discovery offers a new way to fast-track screening methods used in stem cell research.
Wednesday, February 03, 2016
UCL Launches £50 million Technology Investment Fund
UCL is today launching the UCL Technology Fund to invest £50 million in commercialising its world-leading research emerging over the next five years.
Monday, January 25, 2016
DNA ‘Building Blocks’ Pave the Way for Improved Drug Delivery
DNA has been used as a ‘molecular building block’ to construct synthetic bio-inspired pores which will improve the way drugs are delivered and help advance the field of synthetic biology, according to scientists from UCL and Nanion Technologies.
Tuesday, January 19, 2016
First Human Trial for Huntington's Drug
Patients in London are being dosed for the first time with an experimental drug for Huntington’s disease.
Thursday, October 22, 2015
Genes Involved in Schizophrenia and Obesity Highlighted
Genes involved in schizophrenia and obesity have been highlighted in a new UCL study, which could lead to a better understanding of the DNA variants which affect risk of these conditions and aid the development of improved strategies for prevention and treatment.
Monday, October 19, 2015
Possible Evidence for Human Transmission of Alzheimer’s Pathology
Study suggests that under a particular set of circumstances, amyloid-ß may potentially be transmissible through certain medical procedures.
Friday, September 11, 2015
New Variant of Streptococcal Bacteria
Scientists have discovered a new variant of streptococcal bacteria that has contributed to a rise in disease cases in the UK over the last 17 years.
Wednesday, July 15, 2015
Smoking Signs
Research reveals epigenetic alterations caused by smoking.
Wednesday, May 20, 2015
New Biomarkers To Spot Pancreatic Cancer Early
A combination of two biomarkers can identify pre-clinical pancreatic cancer.
Thursday, February 05, 2015
Autolus Launches With £30m Investment
UCL cancer immunotherapy company, Autolus is launches to develop T-cell therapies for haematological and solid tumours.
Thursday, January 22, 2015
Raman Spectroscopy May Enable Non-Invasive Diagnosis of Bone Diseases
Detection of a genetic ‘brittle bone’ disease known as Osteogenesis Imperfecta (OI) is possible by simply scanning a patient’s limbs.
Wednesday, December 03, 2014
Scientific News
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Faster, Cheaper Way to Produce New Antibiotics
A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol.
Process Contaminants in Vegetable Oils and Foods
Glycerol-based process contaminants found in palm oil, but also in other vegetable oils, margarines and some processed foods, raise potential health concerns for average consumers of these foods in all young age groups, and for high consumers in all age groups.
Improving Natural Killer Cancer Therapy
Vanderbilt University researchers discover transcription factor critical for NK cell expansion. Findings could lead to increased therapeutic efficacy.
Molecular Mechanism For Generating Specific Antibody Responses Discovered
Study could spur more ways to treat autoimmune disease, develop accurate vaccines.
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Autism, Cancer Share a Remarkable Number of Risk Genes
Researchers with the UC Davis Comprehensive Cancer Center, MIND Institute identify more than 40 common genes.
Number Of Known Genetic Risk Factors For Endometrial Cancer Doubled
An international collaboration of researchers has identified five new gene regions that increase a woman’s risk of developing endometrial cancer, one of the most common cancers to affect women, taking the number of known gene regions associated with the disease to nine.
Genetic Variant May Help Explain Why Labradors Are Prone To Obesity
A genetic variation associated with obesity and appetite in Labrador retrievers – the UK and US’s favourite dog breed – has been identified by scientists at the University of Cambridge. The finding may explain why Labrador retrievers are more likely to become obese than dogs of other breeds.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!