Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Why Stem Cells Need to Stick with their Friends

Published: Tuesday, November 12, 2013
Last Updated: Tuesday, November 12, 2013
Bookmark and Share
Scientists have identified a core set of functionally relevant factors which regulates embryonic stem cells’ ability for self-renewal.

A key aspect is the protein Oct4 and how it makes stem cells stick together. The identification of these factors will be an important tool in devising better and safer ways of making specialised cells for future regenerative cell therapies for treatment of diseases like diabetes and Parkinson’s disease.

Scientists have known that the protein Oct4 plays a key role in maintaining the embryonic stem cells in pure form by turning on stem cell genes, however up until now it has not been know which of the 8000 or more possible genes that Oct4 can choose from actually support self-renewal.

By comparing the evolution of stem cells in frogs, mice and humans, scientists at the MRC Centre for Regenerative Medicine and the Danish Stem Cell Center in Copenhagen have now been able to link the protein Oct4 with the ability of cells to stick together. They found that for embryonic stem cells to thrive they need to stick together and Oct4’s role is to make sure they stay that way.

“Embryonic stem cells can stay forever young unless they become grown-up cells with a specialised job in a process called differentiation. Our study shows that Oct4 prevents this process by pushing stem cells to stick to each other.” said Dr Alessandra Livigni, Research Fellow at the University of Edinburgh's MRC Centre for Regenerative Medicine.

Identification of specific genes
The research teams in Edinburgh and Copenhagen successfully identified 53 genes, out of more than 8000 possible candidates that together with Oct4, functionally regulate cell adhesion. Almost like finding needles in a haystack the scientists have paved the way for a more efficient way of maintaining stem cells as stem cells.

"Embryonic stem cells are characterized, among other things, by their ability to perpetuate themselves indefinitely and differentiate into all the cell types in the body – a trait called pluripotency. Though to be able to use them medically, we need to be able to maintain them as stem cells, until they're needed. When we want to turn a stem cell into a specific cell for example; an insulin producing beta cell, or a nerve cell like those in the brain, we'd like this process to occur accurately and efficiently. We cannot do this if we don't understand how to maintain stem cells as stem cells,” said Prof Joshua Brickman from the Danish Stem Cell Center, University of Copenhagen.

Future potential
As well as maintaining embryonic stem cells in their pure state more effectively, this new insight will also enable scientists to more efficiently manipulate adult cells to revert to a stem cell like stage known as induced pluripotent stem cells (iPS cells). These cells have many of the same traits and characteristics as embryonic stem cells but can be derived from the patients to both help study degenerative disease and eventually treat them.

“This research knowledge has the potential for us to change the way we grow stem cells, enabling us to use them in a less costly and more efficient way. It will help us devise better and safer ways to create specialised cells for future regenerative medicine therapies,” concludes Prof Joshua Brickman.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Parkinson’s Test Could Aid Early Detection
A test that can detect Parkinson’s disease in the early stages of the illness has moved a step closer.
Tuesday, August 30, 2016
Coffee Consumption Linked to Genes
Researchers have identified a gene that influences coffee consumption. The gene is thought to relate to caffeine breakdown.
Friday, August 26, 2016
Effects of Chemotherapy on Developing Ovaries in Female Fetuses
Researchers at University of Edinburgh have shown that etoposide can damage the development of the ovaries while a fetus is in the womb.
Friday, August 12, 2016
Detecting Hazardous Chemicals in Complex Mixtures
Researchers are pioneering a new chemical substance analyis software technique that could increase illicit substance detection.
Tuesday, August 02, 2016
Flowers Arrange Themselves for Bees
Study suggests plants can maximise their chances of reproduction by taking advantage of how insects move when they gather nectar.
Tuesday, July 19, 2016
Safe CO2 Storage Viable Following Tests
Successful trials in Australia have led to the discovery of an inexpensive method of stored CO2 monitoring underground.
Wednesday, July 13, 2016
DNA Production Facility Begins Operation
Scientists mark the opening of the UK's first fully automated DNA construction and modification facility.
Friday, July 08, 2016
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Wednesday, May 25, 2016
Salt Gene Could Help Cut Heart Disease
Scientists from the University of Edinburgh find that removal of a gene linked with high blood pressure causes a strong appetite for salt.
Wednesday, March 30, 2016
University of Edinburgh, Selcia Achieve Key Milestones in Drug Development Program
Scientists from the University of Edinburgh, working with Selcia, have successfully passed the 20-month milestone targets of a 30-month Wellcome Trust SDDi £2.5 million project to design novel treatments for sleeping sickness.
Monday, November 30, 2015
Garlic Could Aid Cystic Fibrosis Fight
A chemical in garlic kills bacteria that cause deadly infections in people with cystic fibrosis, University of Edinburgh research shows.
Monday, March 02, 2015
Bowel Disease Gene Discovery
Genetic changes that occur in patients with the bowel condition Crohn’s disease could hold clues to fighting the illness.
Wednesday, August 27, 2014
Risk of Brain Injury is Genetic
Link between injury to the developing brain and common variation in genes identified.
Tuesday, May 20, 2014
University of Edinburgh Invests £1.2M in NMR and Mass Spectroscopy Instrumentation
‘Instantaneous’ turnover of samples will benefit research efforts.
Friday, April 25, 2014
Research Make Light Work of Fixing Broken Bones
Artificial bone, created using stem cells and a new lightweight plastic, could soon be used to heal shattered limbs.
Wednesday, February 13, 2013
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Biomolecular Manufacturing ‘On-the-Go’
Wyss Institute team unveils a low-cost, portable method to manufacture biomolecules for a wide range of vaccines, other therapies as well as diagnostics.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!