Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Reactivate Gene to Rejuvenate Tissue Repair, Identify Gene that Promotes Stem Cell Self-Renewal

Published: Tuesday, November 12, 2013
Last Updated: Tuesday, November 12, 2013
Bookmark and Share
Two groups of scientists have made complementary discoveries that break new ground on efforts to turn back the body’s clock on cellular activity.

A team led by Dr. Sean Morrison, Director of CRI and Professor of Pediatrics at UT Southwestern Medical Center, has identified an RNA-binding protein called IMP1 that promotes stem cell self-renewal during fetal development. Self-renewal is the process by which stem cells divide to make more stem cells, which is important for the growth of tissues during fetal development and the regeneration of tissues throughout adult life.

At the same time, researchers including Dr. Hao Zhu, who also directs a lab at CRI and is Assistant Professor of Pediatrics and Internal Medicine at UT Southwestern, have shown that another RNA-binding protein, Lin28a, also promotes tissue repair by reactivating a metabolic state reminiscent of the juvenile developmental stage.

Dr. Zhu’s research, published in Cell, showed that reactivation of Lin28a – a gene that is normally turned on in fetal but not adult tissues – substantially improved hair regrowth and accelerated tissue repair after ear and digit injuries.

“Our work found that Lin28a promotes regeneration through a metabolic mechanism,” said Dr. Zhu. “This finding opens up an exciting possibility that metabolism could be modulated to improve tissue repair, whereby metabolic drugs could be employed to promote regeneration.”

Dr. Morrison’s investigation, published in the online journal eLife, identified a set of genes including IMP1 that are turned on only within time-limited windows, and control developmental switches in stem cell properties between fetal development and adulthood.
IMP1 is turned off during late fetal development, partly as a consequence of increasing expression of a third family of RNA-binding molecules called let-7 microRNAs. Importantly, let-7 microRNAs are turned on during late fetal development in part due to declining expression of Lin28a.

Drs. Morrison and Zhu’s laboratories both studied molecules at different ends of the same pathway – one that regulates stem cell self-renewal and tissue regeneration by modulating the expression of a network of RNA-binding proteins.

“These results are interesting because let-7-regulated networks were first discovered based on their ability to regulate the timing of developmental transitions in worms,” said Dr. Morrison. “This earlier finding suggests that the mechanisms employed by mammalian tissue stem cells to regulate changes in their properties over time are at least partly conserved and depend upon mechanisms inherited from invertebrates.”

A previous study from the Morrison laboratory found that expression of let-7 increases throughout adulthood, reducing the activity of stem cells in older animals. The current findings show that IMP1 inhibits the expression of genes that trigger stem cells to commit to specific fates, while promoting the expression of genes related to self-renewal. Further studies are likely to identify many more genetic targets that enable stem cells to adapt their properties to the changing growth and regeneration demands of tissues over an organism’s life span.

Together, these studies demonstrate that a network of RNA-binding proteins that are turned on specifically during fetal development promote stem cell function and tissue growth by regulating cellular proliferation and metabolism. The loss of Lin28a and IMP1 expression from adult tissues partly explains why adult tissues no longer grow and have less stem cell function than fetal tissues. Thus, by modulating the function of these pathways in adult stem cells, it may be possible to enhance tissue regeneration.

Dr. Zhu’s work was initiated while he was a postdoctoral fellow in Dr. George Daley’s laboratory at Boston Children’s Hospital. Other members of the Daley laboratory, including Shyh-Chang Ng, contributed to this study, and Dr. Daley was senior author on the paper. The work in the Zhu and Morrison laboratories was supported by the National Institutes of Health and the Cancer Prevention and Research Institute of Texas.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Involved in Cocaine Response Identified
UT Southwestern neuroscience researchers have identified the gene by comparing closely related strains of mice often used to study addiction and behavior patterns.
Tuesday, December 24, 2013
Steroids Aid Recovery From Pneumonia
Adding corticosteroids to traditional antimicrobial therapy might help people with pneumonia recover more quickly than with antibiotics alone, UT Southwestern Medical Center scientists have found.
Wednesday, October 15, 2008
Scientific News
Study Finds Brain Chemicals that Keep Wakefulness in Check
Researchers to develop new drugs that promote better sleep, or control hyperactivity in people with mania.
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!