Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Human Stem Cells Elucidate Mechanisms of Beta-Cell Failure in Diabetes

Published: Thursday, November 14, 2013
Last Updated: Thursday, November 14, 2013
Bookmark and Share
Mechanisms that impair insulin production in diabetes identified using a human stem cell model of Wolfram syndrome, a rare form of diabetes.

Scientists from the New York Stem Cell Foundation Research Institute and Columbia University Medical Center (CUMC) have used stem cells created from the skin of patients with a rare form of diabetes to elucidate an important biochemical pathway for beta-cell failure in diabetes. The findings by Linshan Shang and colleagues were published today in Diabetes.

Scientists from NYSCF produced induced pluripotent stem (iPS) cells from skin samples from individuals with a rare form of diabetes, Wolfram syndrome. They then derived insulin-producing cells (beta cells) from these iPS cells, creating a human diabetes model in vitro. Next, they showed that the beta cells failed to normally secrete insulin because of protein-folding—or endoplasmic reticulum (ER)—stress. They found that a chemical, 4-phenyl butyric acid, that relieves this stress prevents the cells from failing, suggesting a potential target for clinical intervention.

“These cells represent an important mechanism that causes beta-cell failure in diabetes. This human iPS-cell model represents a significant step forward in enabling the study of this debilitating disease and the development of new treatments,” said Dieter Egli, PhD, principal investigator of the study, senior research fellow at NYSCF, and NYSCF–Robertson Stem Cell Investigator.

Wolfram syndrome is a rare, often fatal genetic disorder characterized by the development of insulin-dependent diabetes, vision loss, and deafness. Since all forms of diabetes are ultimately the result of an inability of pancreatic beta cells to provide sufficient insulin in response to blood sugar concentrations, this Wolfram patient stem-cell model enables analysis of a specific pathway leading to beta-cell failure in more prevalent forms of diabetes. It also enables the testing of strategies to restore beta-cell function that may be applicable to all types of diabetes.

“Utilizing stem cell technology, we were able to study a devastating condition to better understand what causes the diabetes symptoms, as well as discover possible new drug targets,” said Susan L. Solomon, co-founder and chief executive officer of the New York Stem Cell Foundation.

“This report highlights again the utility of close examination of rare human disorders as a path to elucidating more common ones,” said co-author Rudolph L. Leibel, MD, the Christopher J. Murphy Professor of Diabetes Research and co-director of the Naomi Berrie Diabetes Center at CUMC. “Our ability to create functional insulin-producing cells using stem-cell techniques on skin cells from patients with Wolfram’s syndrome has helped to uncover the role of ER stress in the pathogenesis of diabetes. The use of drugs that reduce such stress may prove useful in the prevention and treatment of diabetes.”

Clinicians from the Naomi Berrie Diabetes Center recruited Wolfram syndrome patients to donate a skin sample. All Wolfram patients had childhood-onset diabetes requiring treatment with injected insulin, and all had vision loss. Additional cell lines were obtained from Coriell Institute for Medical Research. The researchers at NYSCF “reprogrammed,” or reverted, the skin cells to an embryonic-like state to become iPS cells. An iPS cell line generated from a healthy individual was used as a normal control.

The researchers differentiated the iPS cells from the Wolfram subjects and the controls into beta cells, an intricate process that took several weeks. They implanted both Wolfram and control iPS cell-derived beta cells under the kidney capsule of immuno-compromised mice. Beta cells from the Wolfram subjects produced less insulin in the culture dish and secreted less insulin into the bloodstream of the mice when they were challenged with high blood-sugar levels.

A key finding was that these beta cells showed elevated markers of ER stress. Treatment with 4-phenyl butyric acid reduced the ER stress and increased the amount of insulin produced by the beta cells, thereby increasing the ability to secrete insulin in response to glucose.

Direct evidence in mice, as well as circumstantial evidence in humans with both type 1 and type 2 diabetes, highlights the role of the ER stress response mechanism in the survival of insulin-producing beta cells. The ER stress response mechanisms oppose both the stress of immune assault in type 1 diabetes and the metabolic stress of high blood glucose in both types of diabetes. When the ER stress response fails, cell death occurs, potentially reducing the number of insulin-producing cells.

The other contributors to the study are: Linshan Shang, Hector Martinez, David Kahler, and Matthew Zimmer of the New York Stem Cell Foundation Research Institute; Haiqing Hua of the New York Stem Cell Foundation Research Institute and of the Division of Molecular Genetics, Department of Pediatrics, and the Naomi Berrie Diabetes Center at CUMC; and Kylie Foo, Kazuhisa Watanabe, Matthew Freeby, Wendy Chung, Charles LeDuc, and Robin Goland, of the Division of Molecular Genetics, Department of Pediatrics, and the Naomi Berrie Diabetes Center at CUMC.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Neurodevelopmental Syndrome Identified
Study pinpoints underlying genetic mutations, raising hopes for targeted therapies.
Friday, April 22, 2016
Major Complication of Parkinson’s Therapy Explained
Researchers have discovered why long-term use of ¬¬¬L-DOPA (levodopa), the most effective treatment for Parkinson’s disease, commonly leads to a movement problem called dyskinesia, a side effect that can be as debilitating as Parkinson’s disease itself.
Monday, September 14, 2015
An Innovative Algorithm to Decipher How Drugs Work Inside the Body
Researchers at Columbia University Medical Center (CUMC) have developed a computer algorithm that is helping scientists see how drugs produce pharmacological effects inside the body.
Friday, July 24, 2015
Neurons Controlling Appetite Made from Skin Cells
Cells provide individualized model for studying obesity and testing treatments.
Monday, March 02, 2015
Bone Stem Cells Shown To Regenerate Bone And Cartilage In Adult Mice
Cells could be exploited to treat osteoarthritis and osteoporosis.
Monday, January 19, 2015
Non-Gluten Proteins as Targets of Immune Response to Wheat in Celiac Disease
The results were reported online in the Journal of Proteome Research.
Thursday, December 18, 2014
Human Stem Cells Converted to Functional Lung Cells
Possibility of generating lung tissue for transplant using a patient’s own cells.
Thursday, December 05, 2013
New Link Between Obesity and Diabetes Found
Targeting a single enzyme that raises both sugar and insulin levels in the obese could prevent and treat diabetes.
Monday, November 25, 2013
Researchers Discover Cells that Restore Bladder’s Unique Lining
Finding that could lead to new ways to treat chronic bladder pain or to produce new tissue for patients with damaged bladders.
Tuesday, September 24, 2013
Trial Aims to Advance Prenatal Diagnosis of Genetic Defects
High-risk pregnant women being recruited for research on chromosomal abnormalities and incidence of birth defects, developmental delays.
Thursday, August 22, 2013
Is There a Role for Vitamins in Cancer Prevention?
According to recent national surveys, approximately 40 percent of U.S. adults take multivitamins/multiminerals.
Monday, August 12, 2013
DNA Robots Find and Tag Blood Cells
Researchers have created a fleet of molecular “robots” that can home in on specific human cells and mark them for drug therapy or destruction.
Thursday, August 08, 2013
Study Reveals Genes That Drive Brain Cancer
About 15 percent of glioblastoma patients could receive personalized treatment with drugs currently used in other cancers.
Tuesday, August 06, 2013
Key Molecular Pathways Leading to Alzheimer’s Identified
Research approach highlights potential therapeutic targets.
Thursday, July 25, 2013
New Genetic Cause of Pulmonary Hypertension Identified
Study finds druggable target for rare fatal lung disease.
Thursday, July 25, 2013
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!