Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

First Director Named for NHGRI’S New Division of Genomics and Society

Published: Friday, November 15, 2013
Last Updated: Friday, November 15, 2013
Bookmark and Share
Lawrence Brody, Ph.D. selected to lead new division that includes ELSI research program.

Lawrence C. Brody, Ph.D. has been selected to be the first director of the newly established Division of Genomics and Society at the National Human Genome Research Institute (NHGRI).

Dr. Brody is currently chief of the Genome Technology Branch within NHGRI’s intramural research program, and the chief scientific officer of the trans-NIH Center for Inherited Disease Research. NHGRI is one of the 27 institutes and centers that make up the National Institutes of Health.

Dr. Brody’s expertise and interests are wide-ranging, from human genetics and genomics to the public understanding of science. As a bench scientist, he played an instrumental role in early and important discoveries about the BRCA1 gene, which is responsible for a hereditary form of breast cancer.

His research efforts have regularly included studying the practical implications of genomic advances. For example, Dr. Brody was a co-architect of the NHGRI Multiplex Initiative, an innovative project that aimed to better understand how the general public comprehends and reacts to personal genetic testing results.

Dr. Brody has also invested a considerable amount of his professional efforts to addressing the broader societal issues relevant to contemporary genomics research. He has worked on several projects related to genomics, society, and minority populations and, most recently, he served as a key developer of the public exhibition, Genome: Unlocking Life’s Code, which opened in June at the Smithsonian Institution’s National Museum of Natural History.

Moreover, on multiple occasions, he worked closely with the U.S. Solicitor General in the drafting and editing of legal briefs and in the preparation of oral arguments for the gene patenting case that went before the U.S. Supreme Court earlier this year.

“Dr. Brody brings an extraordinary and diverse body of accomplishments and expertise to lead this newly created division,” said NHGRI Director Eric D. Green, M.D., Ph.D. “His perspective as a bench scientist combined with a demonstrated long-term interest in the intersection of science and society makes him uniquely qualified to lead this critical part of NHGRI’s research program.”

The Division of Genomics and Society was established in 2012 as part of an institute-wide reorganization. It is one of four divisions that make up the institute’s extramural research program.

This new division is now responsible for an expanded program related to the many societal issues relevant to genomics research and genomic advances, incorporating and extending the activities of NHGRI’s Ethical, Legal and Social Implications (ELSI) research program.

The latter was established in 1990 as part of the Human Genome Project and aims to pursue multidisciplinary research and training designed to explore the impact of genomics on society.

“It is an exciting time for genetics and genomics, but with that comes the responsibility to examine and address the many important societal implications of these research advances. With improvements in technology as the driving force, genomics can increasingly be used in clinical settings in a way that was simply not possible a decade ago,” Dr. Brody said. “Because genomics is moving closer to our daily lives, we need to better understand its societal impact. Issues such as consent, privacy, and access to genomic information will continue to grow in importance. We need to increasingly pursue research to understand these issues and to engage relevant stakeholders, including the general public, in the discussions.”

Several large NHGRI programs incorporate elements of ELSI research into their studies, including the Clinical Sequencing Exploratory Research program, the Implementing Genomics into Clinical Practice Network, and the Genomic Sequencing and Newborn Screening Disorders program.

Dr. Brody would like to eventually see similar ELSI research programs be implemented by other institutes and centers across NIH. He also sees several related areas for potential research focus, including exploring a legal framework for genetic/genomic testing and examining how advances in genomic technologies affect the economics of medical practice.

Dr. Brody received a B.S. in biology from the Pennsylvania State University, University Park, in 1982, and a Ph.D. in human genetics from Johns Hopkins University, Baltimore, in 1991. He was a Howard Hughes Medical Institute (HHMI) Research Associate from 1990 to 1993 and an HHMI postdoctoral fellow at Johns Hopkins University and the University of Michigan, Ann Arbor, during that time.

He joined NHGRI in 1993 as a senior staff fellow, and became senior investigator and head of the Molecular Pathogenesis Section in the Genome Technology Branch in 2001. Dr. Brody has been chief of that branch since 2010, and the chief scientific officer at the trans-NIH Center for Inherited Disease Research since 2006.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Friday, July 31, 2015
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
Young South African Women can Adhere to Daily PrEP Regimen as HIV Prevention
NIH-funded study finds men in Bangkok, Harlem also successful in taking daily dose.
Saturday, July 25, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Tuesday, July 21, 2015
Early Antiretroviral Therapy Prevents Non-AIDS Outcomes in HIV-infected People
NIH-supported findings illustrate manifold benefit of therapy.
Tuesday, July 21, 2015
Futuristic Brain Probe Allows for Wireless Control of Neurons
NIH-funded scientists developed an ultra-thin, minimally invasive device for controlling brain cells with drugs and light.
Saturday, July 18, 2015
House Votes in Favor of Bill Boosting NIH Funding
The US House of Representatives today overwhelmingly voted in favor of a bill that would increase funding to the NIH by about $10 billion, help speed the development of new drugs, and advance precision medicine initiatives.
Monday, July 13, 2015
NIH-funded Vaccine for West Nile Virus Enters Human Clinical Trials
Enrollment is expected to be completed by December 2015.
Tuesday, July 07, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Boys More Likely to Have Antipsychotics Prescribed, Regardless of Age
NIH-funded study is the first look at antipsychotic prescriptions patterns in the U.S.
Thursday, July 02, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
New Medication for Alcohol Use Disorder
NIH begins clinical trial investigating a potential treatment for alcohol use disorder.
Friday, June 26, 2015
Scientific News
Sorting Through Cellular Statistics
Aaron Dinner, professor in chemistry, and his graduate student Herman Gudjonson are trying to read the manual of life, DNA, as part of the Dinner group’s research into bioinformatics—the application of statistics to biological research.
Playing 'Tag' with Pollution lets Scientists See Who's It
Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot — and where.
Women’s Immune System Genes Operate Differently from Men’s
A new technology reveals that immune system genes switch on and off differently in women and men, and the source of that variation is not primarily in the DNA.
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
High-Resolution 3D Images Reveal the Muscle Mitochondrial Power Grid
NIH mouse study overturns scientific ideas on energy distribution in muscle.
Expanding the Brain
A team of researchers has identified more than 40 new “imprinted” genes, in which either the maternal or paternal copy of a gene is expressed while the other is silenced.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Study Uncovers Target for Preventing Huntington’s Disease
Scientists from Cardiff University believe that a treatment to prevent or delay the symptoms of Huntington’s disease could now be much closer, following a major breakthrough.
Paving the way to Better Ovarian Cancer Diagnosis
Aïcha BenTaieb will present her invention for automated identification of ovarian cancer’s many subtypes at an international conference this fall.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!