Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Biologists ID New Cancer Weakness

Published: Monday, November 18, 2013
Last Updated: Monday, November 18, 2013
Bookmark and Share
Drugs that block new target gene could make many tumors more vulnerable to chemotherapy.

About half of all cancer patients have a mutation in a gene called p53, which allows tumors to survive and continue growing even after chemotherapy severely damages their DNA.

A new study from MIT biologists has found that tumor cells with mutated p53 can be made much more vulnerable to chemotherapy by blocking another gene called MK2. In a study of mice, tumors lacking both p53 and MK2 shrank dramatically when treated with the drug cisplatin, while tumors with functional MK2 kept growing after treatment.

The findings suggest that giving cancer patients a combination of a DNA-damaging drug and an MK2 inhibitor could be very effective, says Michael Yaffe, the David H. Koch Professor in Science and senior author of a paper describing the research in the Nov. 14 issue of the journal Cell Reports.

Several drugs that inhibit MK2 are now in clinical trials to treat inflammatory diseases such as arthritis and colitis, but the drugs have never been tested as possible cancer treatments.

“What our study really says is that these drugs could have an entirely new second life, in combination with chemotherapy,” says Yaffe, who is a member of MIT’s Koch Institute for Integrative Cancer Research. “We’re very much hoping it will go into clinical trials” for cancer.

Sandra Morandell, a postdoc at the Koch Institute, is the paper’s lead author.

To kill a tumor

P53 is a tumor-suppressor protein that controls cell division. Before cell division begins, p53 checks the cell’s DNA and initiates repair, if necessary. If DNA damage is too extensive, p53 forces the cell to undergo programmed cell death, or apoptosis. Tumors that lack p53 can avoid this fate.

“Usually p53 is the main driver of cell death, and if cells lose this pathway they become very resistant to different treatments that cause cell death,” Morandell says.

Several years ago, researchers in Yaffe’s lab discovered that in cancer cells with mutated p53, the MK2 gene helps counteract the effects of chemotherapy. When cancer cells suffer DNA damage, MK2 puts the brakes on the cell division cycle, giving cells time to repair the damage before dividing.

“Our data suggested if you block the MK2 pathway, tumor cells wouldn’t recognize that they had DNA damage and they would keep trying to divide despite having DNA damage, and they would end up committing suicide,” Yaffe says.

In the new study, the researchers wanted to see if this would hold true in tumors in living animals, as well as cells grown in a lab dish. To do that, they used a strain of mice that are genetically programmed to develop non-small-cell lung tumors. The researchers further engineered the mice so they could reversibly turn the MK2 gene on or off, allowing them to study tumors with and without MK2 in the same animal.

This new approach allows them, for the first time, to compare different types of tumors in the same mice, where all genetic factors are identical except for MK2 expression.

"This is a very elegant and potentially useful approach for others to use," says Titia de Lange, a professor of cell biology and genetics at Rockefeller University, who was not part of the research team.

Using these mice, the researchers found that before treatment, tumors lacking both MK2 and p53 grow faster than tumors that have MK2. This suggests that treating tumors with an MK2 inhibitor alone would actually do more harm than good, possibly increasing the tumor’s growth rate by taking the brake off the cell cycle.

However, when these tumors are treated with cisplatin, the tumors lacking MK2 shrink dramatically, while those with MK2 continue growing.

‘A nonobvious combination’

The potential combination of cisplatin and MK2 inhibitors is unlike other chemotherapy combinations that have been approved by the Food and Drug Administration, which consist of pairs of drugs that each show benefit on their own. “What we found is a combination that you would never have arrived at otherwise,” Yaffe says. “It’s a nonobvious combination.”

While this study focused on non-small-cell lung tumors, the researchers have gotten similar results in cancer cells grown in the lab from bone, cervical, and ovarian tumors. They are now studying mouse models of colon and ovarian cancer.

The research was funded by the Austrian Science Fund, the National Institutes of Health, Janssen Pharmaceuticals Inc., the Koch Institute, MIT’s Center for Environmental Health Sciences, the Volkswagenstiftung, the Deutsche Forschungsgemeinschaft, the German Ministry for Science and Technology, the Deutsche Jose Carreras Leukämie Stiftung, and the Anna Fuller Fund.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
New System for Detecting Explosives
Spectroscopic system with chip-scale lasers cuts detection time from minutes to microseconds.
Wednesday, June 01, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
Controlling RNA in Living Cells
Modular, programmable proteins can be used to track or manipulate gene expression.
Wednesday, April 27, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Monday, April 04, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Why Some Tumors Withstand Treatment
Mechanism uncovered that allows cancer cells to evade targeted therapies.
Thursday, March 17, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Human Stem Cells to Rapidly Generate Bone, Heart Muscle
A new study shows that combining positive and negative signals can quickly and efficiently steer stem cells down complex developmental pathways to become specialized tissues that could be used in the clinic.
New Mechanism of Tuberculosis Infection
Researchers at UTSW Medical Center have identified a new way that tuberculosis bacteria get into the body, revealing a potential therapeutic angle to explore.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer and that, when deleted in the lungs of mice, prevents the cancer from forming.
Eliminating Doubt in Criminal Investigations
New ASU certificate to help curb error, misunderstanding in the quest for justice.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
A Novel Cell Culture Model For Forensic Biology Experiments
Researchers have developed a new cell culture model which provides an efficient research tool in forensic biology.
Rhino DNA Bank Aids Anti-Poaching Fight
At the University of Pretoria's Veterinary Genetics Laboratory (VGL) at Onderstepoort, Dr Cindy Harper and her team have developed a ground-breaking technique to collect and catalogue DNA from rhinos and rhino horns.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!