Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Biologists ID New Cancer Weakness

Published: Monday, November 18, 2013
Last Updated: Monday, November 18, 2013
Bookmark and Share
Drugs that block new target gene could make many tumors more vulnerable to chemotherapy.

About half of all cancer patients have a mutation in a gene called p53, which allows tumors to survive and continue growing even after chemotherapy severely damages their DNA.

A new study from MIT biologists has found that tumor cells with mutated p53 can be made much more vulnerable to chemotherapy by blocking another gene called MK2. In a study of mice, tumors lacking both p53 and MK2 shrank dramatically when treated with the drug cisplatin, while tumors with functional MK2 kept growing after treatment.

The findings suggest that giving cancer patients a combination of a DNA-damaging drug and an MK2 inhibitor could be very effective, says Michael Yaffe, the David H. Koch Professor in Science and senior author of a paper describing the research in the Nov. 14 issue of the journal Cell Reports.

Several drugs that inhibit MK2 are now in clinical trials to treat inflammatory diseases such as arthritis and colitis, but the drugs have never been tested as possible cancer treatments.

“What our study really says is that these drugs could have an entirely new second life, in combination with chemotherapy,” says Yaffe, who is a member of MIT’s Koch Institute for Integrative Cancer Research. “We’re very much hoping it will go into clinical trials” for cancer.

Sandra Morandell, a postdoc at the Koch Institute, is the paper’s lead author.

To kill a tumor

P53 is a tumor-suppressor protein that controls cell division. Before cell division begins, p53 checks the cell’s DNA and initiates repair, if necessary. If DNA damage is too extensive, p53 forces the cell to undergo programmed cell death, or apoptosis. Tumors that lack p53 can avoid this fate.

“Usually p53 is the main driver of cell death, and if cells lose this pathway they become very resistant to different treatments that cause cell death,” Morandell says.

Several years ago, researchers in Yaffe’s lab discovered that in cancer cells with mutated p53, the MK2 gene helps counteract the effects of chemotherapy. When cancer cells suffer DNA damage, MK2 puts the brakes on the cell division cycle, giving cells time to repair the damage before dividing.

“Our data suggested if you block the MK2 pathway, tumor cells wouldn’t recognize that they had DNA damage and they would keep trying to divide despite having DNA damage, and they would end up committing suicide,” Yaffe says.

In the new study, the researchers wanted to see if this would hold true in tumors in living animals, as well as cells grown in a lab dish. To do that, they used a strain of mice that are genetically programmed to develop non-small-cell lung tumors. The researchers further engineered the mice so they could reversibly turn the MK2 gene on or off, allowing them to study tumors with and without MK2 in the same animal.

This new approach allows them, for the first time, to compare different types of tumors in the same mice, where all genetic factors are identical except for MK2 expression.

"This is a very elegant and potentially useful approach for others to use," says Titia de Lange, a professor of cell biology and genetics at Rockefeller University, who was not part of the research team.

Using these mice, the researchers found that before treatment, tumors lacking both MK2 and p53 grow faster than tumors that have MK2. This suggests that treating tumors with an MK2 inhibitor alone would actually do more harm than good, possibly increasing the tumor’s growth rate by taking the brake off the cell cycle.

However, when these tumors are treated with cisplatin, the tumors lacking MK2 shrink dramatically, while those with MK2 continue growing.

‘A nonobvious combination’

The potential combination of cisplatin and MK2 inhibitors is unlike other chemotherapy combinations that have been approved by the Food and Drug Administration, which consist of pairs of drugs that each show benefit on their own. “What we found is a combination that you would never have arrived at otherwise,” Yaffe says. “It’s a nonobvious combination.”

While this study focused on non-small-cell lung tumors, the researchers have gotten similar results in cancer cells grown in the lab from bone, cervical, and ovarian tumors. They are now studying mouse models of colon and ovarian cancer.

The research was funded by the Austrian Science Fund, the National Institutes of Health, Janssen Pharmaceuticals Inc., the Koch Institute, MIT’s Center for Environmental Health Sciences, the Volkswagenstiftung, the Deutsche Forschungsgemeinschaft, the German Ministry for Science and Technology, the Deutsche Jose Carreras Leukämie Stiftung, and the Anna Fuller Fund.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How the Brain Recognizes Faces
Machine-learning system spontaneously reproduces aspects of human neurology.
Wednesday, December 07, 2016
Radiation-Free Imaging in the Brain
Scientists create sensors that use proteins to detect particular targets through induced blood flow changes.
Monday, December 05, 2016
New Method for Analyzing Crystal Structure
Exotic materials called photonic crystals reveal their internal characteristics with new method.
Monday, November 28, 2016
Biomarker Guiding Cancer Therapy
Biologists link levels of Mena protein to breast cancer cells’ sensitivity to chemotherapy.
Tuesday, November 22, 2016
Capsule Achieves Long-Term Drug Delivery
Novel drug delivery method could aid in elimination of malaria and treatment of many other diseases.
Monday, November 21, 2016
Synthetic Cells Isolate Genetic Circuits
Encapsulating molecular components in artificial membranes offers more flexibility in designing circuits.
Tuesday, November 15, 2016
Turning Greenhouse Gas into Gasoline
New catalyst provides design principles for producing fuels from carbon dioxide emissions.
Tuesday, November 15, 2016
New Approach Against Salmonella
Researchers have developed a strategy to immunize against microbes that invade the gastrointestinal tract, including Salmonella.
Tuesday, November 08, 2016
Laser Particles Could Provide Sharper Tissue Images
New imaging technique stimulates particles to emit laser light, could create higher-resolution images.
Tuesday, November 08, 2016
Engineers Design New Weapon Against Bacteria
Researchers have successfully engineered antimicrobial peptides that can kill bacterial strains resistant to existing antibiotics.
Thursday, November 03, 2016
Predicting Cancer Cells’ Response to Chemotherapy
Researcher develop method for testing cell ability to perform different types of DNA repair, which can reveal tumors’ sensitivity to drugs.
Wednesday, November 02, 2016
Nanobionic Spinach Detects Dangerous Chemicals
Scientists have changed spinach plants into biosensors that can detect harful chemicals and wirelessly relay the information.
Tuesday, November 01, 2016
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
Friday, October 28, 2016
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Tuesday, October 25, 2016
MRIs for Fetal Health
Algorithm could help analyze fetal scans to determine whether interventions are warranted.
Monday, October 24, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Ribosome Recycling as a Drug Target
Researchers explain mechanism that recycles bacterial ribosomes stalled on messenger RNAs that lack termination codons.
How the Brain Recognizes Faces
Machine-learning system spontaneously reproduces aspects of human neurology.
Boosting Effectiveness of Asthma Therapy
A team of scientists from UCSF has developed a new treatment to dampen bronchospasm.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!