Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Curie-Cancer and Meiogenix Sign Two Partnership Agreements

Published: Tuesday, November 19, 2013
Last Updated: Tuesday, November 19, 2013
Bookmark and Share
Curie-Cancer and Meiogenix will develop the SpiX technology in yeast and in mice to unlock unexplored genetic diversity.

Curie-Cancer announces two three-year partnership agreements with Meiogenix. Meiogenix develops SpiX technology under license from Institut Curie and Institut National de la Recherche Agronomique (INRA).

This technology will be deployed in yeast and mice to exploit the unexplored natural biodiversity of organisms.

The process of homologous recombination enables the exchange of nucleotide sequences between two similar or identical DNA strands. It occurs naturally in every cell. In somatic cells, it is mostly involved in the repair of genotoxic lesions, while in germline cells, it is involved in the exchange of genetic material between the parental chromosomes, with the outcome that the traits of a descendant are a ‘mixture’ of traits from its parents. 

Meiotic recombination occurs at numerous places along the chromosome, generating the genetic diversity transmitted by the gametes, but not everywhere and not at the same rate. Some chromosomal regions frequently recombine, but others are ‘cold’, resulting in the fact that they remain in parental configuration in the vast majority of gametes for many generations.

Alain Nicolas, CNRS Research Director at Institut Curie and his team developed this technology to target and enhance meiotic recombination in cold regions. The technology is based on Spo11, an evolutionary conserved endonuclease that naturally catalyzes the formation of meiotic double-strand breaks. SpiX(R) technology is based on the use of Spo11. It modulates the process of homologous recombination in the genome by increasing its frequency in cold regions. By stimulating the process in ‘regions of rare exchange’, SpiX can unlock unexplored genetic diversity.

"Our goals are twofold. Firstly, to investigate the possibilities offered by SpiX in an animal model, in this case mice. A validation in mice could lead to other possible applications in close species such as rats, which are  widely used animal models for studying many diseases such as cancer for example,” said Alain Nicolas “The other objective is to investigate a second generation of the technology and new techniques to control meiotic recombination in yeast, an organism in which we have extensively validated the technology.”

“As an SME, it is not always easy to access academic expertise,” said Giacomo Bastianelli, CEO of Meiogenix. “However, in Curie-Cancer we have found a partner who understands our need to develop the technology and to create industrial value from day one. We anticipate that the results of all our on-going research programs will be of enormous interest in major industrial fields, ranging from agrobiotech, biofuels, industrial yeasts, or animal breeding.”

“These agreements may ultimately help with the treatment of cancer, but they are also touching on other subject areas such as agriculture. This is why we are delighted to be able to contribute to the development of a French SME like Meiogenix,” said Damien Salauze, director of Curie-Cancer. “This partnership embodies the principles of the Institut Carnot label which we were awarded by the French government in 2011 in recognition of our drive to provide genuine solutions for industry and ultimately for patients.”

New perspectives in plants and agronomy
The original focus in the development of the technology was to treat cancer. However, Meiogenix also identified major applications for plants or for  yeast which have been widely used in food production processes for bread, cheese, wine and beer. SpiX technology can be used to target meiotic recombination in specific cold regions of genomes by fusing Spo11 to highly specific binding domains (ZFNs, TALENs). This can help breeders to unlock the genetic diversity that is hard to obtain with current techniques or that will require long breeding cycles.

The current research programs at Meiogenix aim to demonstrate that SpiX is able to increase the frequency of meiotic recombination in cold regions of plant genomes (rice, corn, wheat, etc), resulting in new commercial varieties of plants with interesting traits (resistance to dryness for example). This may have  the potential to meet the food needs of the growing worldwide population.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Curie-Cancer and Strand Launch Curie Image Database
A breakthrough image management platform for scientists.
Wednesday, December 18, 2013
Curie-Cancer Trebles Early Phase Clinical Research Studies with Industry Partners
Ten early stage clinical studies (phase I) were conducted in 2012, trebling since 2010 and continuing to grow in 2013.
Tuesday, March 26, 2013
Curie-Cancer and Harmonic Pharma Sign a Partnership Agreement
Under this multi-year research collaboration, Curie-Cancer will give Harmonic Pharma access to its extensive collection of patient-derived xenografts representative of human tumors.
Tuesday, November 06, 2012
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
World’s First Therapeutic Venom Database
Open-source library describes nearly 43,000 effects on the human body.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Fat Cells Originating from Bone Marrow Found in Humans
Cells could contribute to diabetes, heart disease.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos