Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Digging Deeper Into Cancer

Published: Tuesday, November 19, 2013
Last Updated: Tuesday, November 19, 2013
Bookmark and Share
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.

“If you just open a text on the pathology of cells, you see hundreds of strange-looking cells – this one with a gigantic nucleus, that one with vacuoles that push the nucleus aside,” says Wallace Marshall, PhD ’97, an associate professor of biochemistry and biophysics. “It’s like an atlas of freakish cells.”

Marshall wondered if this lineup of distorted cells might hold a clue to a new way to fight cancer. Because cancer cells divide so quickly, they’re on a fast track to mutate and develop resistance to chemo drugs. So new drugs are continually added to the mix, often triggering an arms race between the chemo drugs and the cancer – a race that the cancer sometimes wins.

Marshall thought of a different strategy: what if the enlarged nuclei, and specialized cellular structures called organelles, actually drive cancer metabolism? If so, then developing ways to reverse organelle growth could rob cancer cells of the proteins and other resources they need to grow and proliferate.

The hypothesis exemplifies one of UC San Francisco’s precision medicine pillars: basic discovery. The long path to developing potent new treatments often starts with an observation in the lab that then leads to a question about a fundamental life process. This in turn prompts a “testable” hypothesis. Science is full of hypotheses that don’t pan out because experiments fail to support them. But those that survive the rigors of investigation can change minds – and save lives.

Marshall’s lab has begun to study the processes by which organelles enlarge. Once armed with that understanding, his team plans to test drug candidates to “deprogram” them and counter their growth.

Such a treatment approach could circumvent the key vulnerability of chemotherapy, Marshall says. It would not aim directly at the biochemical pathway that allows cancer cells to multiply rapidly – the very capacity that also allows them to mutate and develop resistance to drugs.

Instead, it would attack the cascade of chemical signals that regulates organelle growth. Marshall reasons that these signals are not likely to be the same ones that cancer cells use to mutate and evade the drugs.

Even if cancer cells did develop resistance to drugs targeting their organelle growth, Marshall says, they would have double the work to evade both these drugs and the more conventional ones countering cellular proliferation.

Marshall likens organelles to “reaction vessels” – akin to tanks in a chemical plant, churning out products through chemical reactions. The size and design of the reaction vessels, he says, are just as important as the chemistry going on inside them. Shrink the vessels, and you cut their productivity.

He actually has two hypotheses about the link between organelle size and cancer. One postulates that gargantuan nuclei and organelles derive from the cancer cell’s need to ramp up its metabolism. If the “reaction vessels” could be made to return to their earlier, smaller configuration, the cancer cell might starve.

In his second scenario, the cancer cell’s hypermetabolism is a result of organelle growth, not its cause. But, again, by driving the organelles back to a more normal size range, the cell would revert to a less malignant state.

Marshall stresses that neither scenario has been tested. That’s his long-range goal. To get there, he must first understand the natural mechanisms that regulate organelle growth. His lab is now at the stage of finding out what specific steps control organelle growth – how a cell knows the size of its nuclei and mitochondria, for example, or knows if it’s well fed.

If he can identify the genetic controls or enzymes and other molecules that underlie these processes, he would have targets for potential drugs to reprogram the abnormal growth.

In collaboration with UCSF’s Small Molecule Discovery Center, his lab is carrying out automated, “high-throughput” tests, like those used in commercial drug development, to screen for drug candidates that impede specific genes or molecules. Such screening efforts often search through tens of thousands to hundreds of thousands of compounds to find the few able to block the target enzyme.

His colleague Davide Ruggero, PhD, who holds UCSF’s Helen Diller Family Endowed Chair of Basic Science in Urological Cancer, has developed a technique to inject/introduce oncogenes into progenitors of connective tissue known as fibroblast cells. This induces tumor formation. By then using special stains to reveal the organelles in the resulting tumor cells, Marshall’s team can scrutinize cells at various stages of cancer growth.

“We have the trajectory of how they change as they become cancer cells. If we can move them back along the same trajectory, we’ll see if that can arrest the cancer growth.”

It’s a long way from a fundamental insight to an approved therapy, and Marshall is the first to admit it. But he says UCSF’s precision medicine mindset will likely play a key role in making that journey more quickly.

“I think the standard drug therapy approach is often a ‘fire and forget’ strategy – like a ballistic missile. You pick the drug, you give it to the patient, and cross your fingers that it will work. But precision medicine entails following up with more research to measure how the individual patient is responding – through physiological indicators or gene expression patterns or, if our organelle-based approaches pan out, measuring at the level of cellular structure.”

Precision medicine, then, extends the process into an ongoing, evidence-based approach to find not only whether a patient got better, but how and why and at what rate.

“This will allow us to steer patients back to a more healthy state instead of only hammering them with drugs,” Marshall says.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
Scientific News
Microdroplet Reactors Mimic Living Systems
Researchers use microdroplets to study non-equilibrium reactions like those in living organisms.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Envigo Rat Models Proven to be Susceptible to Intra-Vaginal HSV-2 Infection and Protectable
Scientific findings establish the effectiveness of new approach to investigate the protective effects of vaccine candidates and anti-viral microbodies and to study asymptomatic primary genital HSV-2 infection.
What do Banana Peels and Human Skin Have in Common?
Human skin and banana peels have something in common: they produce the same enzyme when attacked. By studying fruit, researchers have come up with an accurate method for diagnosing the stages of this form of skin cancer.
The Spice of Life
Scientists discover important genetic source of human diversity.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
The Power of Three
Overlooked portion of cell “death receptor” critical in some cancers, autoimmune diseases.
Drug that Activates Innate Immune System Identified
Researchers from the institute have identified a drug, which is straightforward to synthesize and to couple to antigens that induce an immune response and may prove useful in the generation of vaccines.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!