Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Graphene Nanoribbons for “Reading” DNA

Published: Tuesday, November 19, 2013
Last Updated: Tuesday, November 19, 2013
Bookmark and Share
One of the methods used for examining the molecules in a liquid consists in passing the fluid through a nano-sized hole so as to detect their passage.

EPFL researchers have found a way to improve this technique by using a material with unique properties: graphene.

If we wanted to count the number of people in a crowd, we could make on the fly estimates, very likely to be imprecise, or we could ask each person to pass through a turnstile. The latter resembles the model that EPFL researchers have used for creating a “DNA reader” that is able to detect the passage of individual DNA molecules through a tiny hole: a nanopore with integrated graphene transistor.

The DNA molecules are diluted in a solution containing ions and are driven by an electric field through a membrane with a nanopore. When the molecule goes through the orifice, it provokes a slight perturbation to the field, detectable not only by the modulations in ionic current but also by concomitant modulation in the graphene transistor current. Based on this information, it is possible to determine whether a DNA molecule has passed through the membrane or not.

A thickness of one third of a nanometer
This system is based on a method that has been known for over a dozen years. The original technique was not as reliable since it presented a number of shortcomings such as clogging pores and lack of precision, among others. “We thought that we would be able to solve these problems by creating a membrane as thin as possible while maintaining the orifice’s strength”, said Aleksandra Radenovic from the Laboratory of Nanoscale Biology at EPFL. Together with Floriano Traversi, postdoctoral student, and colleagues from the Laboratory of Nanoscale Electronics and Structures, she came across the material that turned out to be both the strongest and most resilient: graphene, which consists of a single layer of carbon molecules. The strips of graphene or nanoribbons used in the experiment were produced at EPFL, thanks to the work carried out at the Center for Micro Nanotechnology (CMI) and the Center for Electron Microscopy (CIME).

“Through an amazing coincidence, continued the researcher, the graphene layer’s thickness measures 0.335 nm, which exactly fits the gap existing between two DNA bases, whereas in the materials used so far there was a 15 nm thickness.” As a result, while previously it was not possible to individually analyze the passage of DNA bases through these “long” tunnels – at a molecular scale –, the new method is likely to provide a much higher precision. Eventually, it could be used for DNA sequencing.

However they are not there yet. In only 5 milliseconds, up to 50’000 DNA bases can pass through the pores. The electric output signal is not clear enough for “reading” the live sequence of the DNA strand passage. “However, the possibility of detecting the passage of DNA with graphene nanoribbons is a breakthrough as well as a significant opportunity”, said Aleksandra Radenovic. She noted that, for example, the device is also able to detect the passage of other kinds of proteins and provide information on their size and/or shape.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,600+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Reclaiming The Immune System's Assault On Tumors
EPFL study shows a way to reclaim corrupted immune cells.
Wednesday, June 15, 2016
Intestinal Worms Boost Immune System In A Surprising Way
EPFL researchers find that intestinal worm infections cause lymph nodes to produce more immune cells as well as grow in size.
Friday, May 06, 2016
Improved Animal Model for Breast Cancer
EPFL scientists have developed an animal model for breast cancer that faithfully captures the disease. Tested on human breast tissue, this the most clinically realistic model for breast cancer to date.
Friday, March 04, 2016
Rapid, Highly Sensitive Diagnostics
A portable and low-cost diagnostic device has been developed at EPFL. This microfluidic tool, which has been tested with Ebola, requires no bulky equipment. It is thus ideally suited for use in remote regions.
Tuesday, February 23, 2016
Observing Brain Diseases in Real Time
An innovative tool allows researchers to observe protein aggregation throughout the life of a worm.
Monday, February 15, 2016
What do Banana Peels and Human Skin Have in Common?
Human skin and banana peels have something in common: they produce the same enzyme when attacked. By studying fruit, researchers have come up with an accurate method for diagnosing the stages of this form of skin cancer.
Tuesday, February 09, 2016
A Better Model for Parkinson's
Scientists at EPFL solve a longstanding problem with modeling Parkinson’s disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.
Wednesday, February 03, 2016
Squeezing Cells into Stem Cells
EPFL scientists have developed a new method that helps cells turn in usable stem cells. The new approach involves “squeezing” cells with a gel, and paves the way for large-scale production of stem cells for medical purposes.
Tuesday, January 12, 2016
Super-Fine Solution to Sponge Up Micropollutants
A super-fine form of powdered activated carbon captures micropollutants more rapidly than the conventional kind and could by used in Swiss wastewater treatment plants, say EPFL researchers in a new study.
Friday, January 08, 2016
Treating Colon Cancer with Vitamin A
Scientists at EPFL identify the biological pathway behind the growth of colon cancer, and block it with vitamin A.
Wednesday, December 16, 2015
Out Now: A Microscope that Sees Live Cells in 3D
EPFL spin-off Nanolive has launched the 3D Cell Explorer, a microscope for observing living cells in 3D. This new tool could be a real boon for researchers in such areas as infertility.
Thursday, December 10, 2015
Antidepressants Plus Blood-Thinners Slow Down Brain Cancer
EPFL scientists have found that combining antidepressants with anticoagulants slows down brain tumors (gliomas) in mice.
Monday, September 28, 2015
DNA Sequencing Improved by Slowing Down
EPFL scientists have developed a method that improves the accuracy of DNA sequencing up to a thousand times.
Thursday, September 24, 2015
Preventing Crystallization to Improve Drug Efficiency
Esther Amstad and an international team of researchers have developed a method to increase the solubility of poorly soluble substances, such as many of the newly developed drugs.
Thursday, September 17, 2015
The Brain is Not as Cramped as We Thought
Using an innovative method, EPFL scientists show that the brain is not as compact as we have thought all along.
Wednesday, August 12, 2015
Scientific News
Platelets are the Pathfinders for Leukocyte Extravasation During Inflammation
Findings from the study could help in the prevention and treatment of inflammatory pathologies.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
Manufactured Stem Cells to Advance Clinical Research
Clinical-grade cell line will enable development of new therapies and accelerate early-stage clinical research.
Dengue Virus Exposure May Amplify Zika Infection
Researchers at Imperial College London have found that the previous exposure to the dengue virus may increase the potency of Zika infection.
Gender Determination in Forensic Investigations
This study investigated the effectiveness of lip print analysis as a tool in gender determination.
Identifying Novel Types of Forensic Markers in Degraded DNA
Scientists have tried to verify the nucleosome protection hypothesis by discovering STRs within nucleosome core regions, using whole genome sequencing.
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Starving Stem Cells May Enable Scientists To Build Better Blood Vessels
Researchers from the University of Illinois at Chicago College of Medicine have uncovered how changes in metabolism of human embryonic stem cells help coax them to mature into specific cell types — and may improve their function in engineered organs or tissues.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,600+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!