Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Technique Diagnoses Cancer from Bodily Fluids

Published: Tuesday, November 26, 2013
Last Updated: Tuesday, November 26, 2013
Bookmark and Share
Harvard researchers contributed machine learning techniques to improve UCLA diagnostic tool.

A team of researchers from Harvard University and the University of California, Los Angeles, have demonstrated a technique that, by measuring the physical properties of individual cells in body fluids, can diagnose cancer with a high degree of accuracy.

The technique, which uses a deformability cytometer to analyze individual cells, could reduce the need for more cumbersome diagnostic procedures and the associated costs, while improving accuracy over current methods. The initial clinical study, which analyzed pleural fluid samples from more than 100 patients, was published in the current issue of the peer-reviewed journal Science Translational Medicine.

Pleural fluid, a natural lubricant of the lungs as they expand and contract during breathing, is normally present in spaces surrounding the lungs. Medical conditions such as pneumonia, congestive heart failure, and cancer can cause an abnormally large buildup of the fluid, which is called a pleural effusion.

When cytopathologists screen for cancer in pleural effusions, they perform a visual analysis of prepared cells extracted from the fluid. Preparing cells for this analysis can involve complicated and time-consuming dyeing or molecular labeling, and the tests often do not definitively determine the presence of tumor cells. As a result, additional costly tests often are required.

The method used to assess the cells in the UCLA–Harvard study, developed previously by the UCLA researchers, requires little sample preparation, relying instead on the imaging of cells as they flow through microscale fluid conduits.

Imagine squeezing two balloons, one filled with water and one filled with honey. The balloons would feel different and would deform differently in your grip. The researchers used this principle on the cellular level by using a fluid grip to "squeeze" individual cells that are 10,000 times smaller than balloons—a technique called "deformability cytometry." The extent of a cell’s compression can provide insights about the cell's makeup or structure, such as the elasticity of its membrane or the resistance to flow of the DNA or proteins inside it. Cancer cells have a different architecture and are softer than healthy cells; as a result, they "deform" differently.

Using deformability cytometry, researchers can analyze more than 1,000 cells per second as they are suspended in a flowing fluid, providing significantly more detail on the variations within each patient's sample than could be detected using previous physical analysis techniques. Skillfully manipulating this large amount of cellular data, coauthors Ryan Adams, assistant professor of computer science at the Harvard School of Engineering and Applied Sciences, and Harvard undergraduate Yo Sup (Joseph) Moon connected how the distribution of individual cells’ properties correlate with a cancer diagnosis.

The researchers also noted that the more detailed information they obtained improved the sensitivity of the test: Some patient samples that were not identified as cancerous via traditional methods were found to be so through deformability cytometry. These results were verified six months later.

"Building off of these results, we are starting studies with many more patients to determine if this could be a cost-effective diagnostic tool and provide even more detailed information about cancer origin," said Dino Di Carlo, associate professor of bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science and a co-principal investigator on the research. "It could help to reduce laboratory workload and accelerate diagnosis, as well as offer doctors a new way to improve clinical decision making."

Jianyu Rao, professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA and the other co-principal investigator on the research, said the technique could potentially be used in a number of clinical settings to help manage cancer patients.

"First, it may increase diagnostic accuracy for the detection of cancer cells in body fluid samples," Rao said. "Second, it may provide a method of initial screening for cancer in body fluid samples in places with limited resources or a lack of experienced cytologists. Third, it may provide a test to determine the drug sensitivity of cancer cells."

Rao added that additional large-scale clinical studies are needed to further validate this technique for each of those applications.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Thursday, August 25, 2016
Toxic Chemicals Found in Drinking Water of 33 States
High levels of fluorinated compounds have been linked to cancer, hormone disruption.
Thursday, August 11, 2016
New Approach To Severe Bacterial Infections And Sepsis
Protein fragment could provide a defense when antibiotics fail.
Friday, July 08, 2016
Harvard Licenses Genotyping Platform
Novel approach aids development of drug resistance testing products for HIV.
Tuesday, May 24, 2016
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
Monday, May 23, 2016
New Weapon Against Breast Cancer
Molecular marker in healthy tissue can predict a woman’s risk of getting the disease, research says.
Thursday, April 07, 2016
Collaboration to Develop Cancer Therapeutics
Major license agreement with Merck, enabled by Blavatnik Biomedical Accelerator, aims to develop therapy for most common form of acute leukemia.
Tuesday, March 22, 2016
Scaling Up Tissue Engineering
Wyss Institute has invented Bioprinting technique that creates thick 3D tissues composed of human stem cells and embedded vasculature, with potential applications in drug testing and regenerative medicine.
Tuesday, March 15, 2016
Into Thin Air
Lower oxygen intake could be used to prevent mitochondrial diseases from forming.
Tuesday, March 01, 2016
High Poverty’s Effect on Childhood Leukemia
Patients more likely to suffer early relapses, which can be harder to treat.
Thursday, February 25, 2016
A Cancer’s Surprise Origins, Caught in Action
First demonstration of a melanoma arising from a single cell.
Monday, February 01, 2016
Seeing Hope
Gene therapy/drug combo restores some vision in mice with optic nerve injury.
Wednesday, January 20, 2016
Diagnosing Cancer from a Single Drop of Blood
What if a physician could effectively diagnose cancer from one drop of a patient’s blood?
Friday, January 08, 2016
Detecting When and Why Deadly Blood Clots Form
New bioinspired blood coagulation assay is more sensitive than existing assays and could one day be used to diagnose rare bleeding disorders and prevent toxic effects of anticoagulant and antiplatelet drugs.
Wednesday, January 06, 2016
Helping Cells Forget Who They Are
Erasing a cell’s memory makes it easier to manipulate them into becoming another type of cell.
Wednesday, December 23, 2015
Scientific News
Shedding Light on HIV Vaccine Design
Broadly speaking - Mathematical modelling of host-pathogen coevolution sheds light on HIV vaccine design.
AACC 2016 Sees Clinical Chemistry Labs Drive Precision Medicine Offerings
Biomarker assays to enable precision medicine and risk assessment, mass spec-based tests designed for use in clinical labs large and small, and liquid biopsy technology captured the spotlight at the AACC annual meeting.
Automated Patch Clamping Trends
Learn more about current practices, preferences and metrics in ion channel drug screening using APC technology.
Lab-on-a-Stick: Miniaturised Clinical Testing For Fast Detection Of Antibiotic Resistance
A portable power-free test for the rapid detection of bacterial resistance to antibiotics has been developed by academics at Loughborough University and the University of Reading.
Genetic Ancestry of Cultivated Strawberry Unravelled
UNH scientists constructed a linkage map of the seven chromosomes of the diploid Fragaria iinumae, which allows them to fill in a piece of the genetic puzzle about the eight sets of chromosomes of the cultivated strawberry.
Progress In Vaccination Against Vespid Venom
Researchers at the Helmholtz Zentrum München and the Technical University Munich have presented a method which facilitates a personalised procedure for wasp allergy sufferers.
New Drug Target for Inflammatory Disorders
Penn study finds enigmatic molecules maintain equilibrium between fighting infection and inflammatory havoc.
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Mechanisms of Calcium Blockers
Researchers describe how the fundamental mode of action of two distinct chemical classes of calcium channel blockers differs.
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!