Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Immune Response Triggered by Honeybee Venom Supports Hypothesis on the Origin of Allergies

Published: Wednesday, November 27, 2013
Last Updated: Wednesday, November 27, 2013
Bookmark and Share
Allergy-like immune reactions could represent a mechanism of the body that protects it against toxins.

This surprising conclusion has been reached by scientists at Stanford University, USA, working on a research project co-financed by the Austrian Science Fund FWF. The recently published findings prove that honeybee venom triggers an immune response in mice associated with the formation of IgE antibodies, which are also typical for allergic responses. These IgEs then confer protection against higher amounts of the venom subsequently administered to the mice. Thus, for the first time, IgEs were observed as having a direct protective function against a venom - a finding that substantiates a controversial hypothesis on the emergence of allergies formulated in the 1990s.

Allergies are quite unnecessary: instead of fighting microbes that pose a threat to health, the immune system targets harmless pollens, hairs or dust particles. The question as to why the body puts up such a fight against harmless substances is one that preoccupies scientists all over the world. A study by an Erwin Schrödinger Fellow of the Austrian Science Fund FWF, which has been currently published in the journal Immunity, gives new impetus to a controversial hypothesis for the explanation of such allergic reactions.

Toxin Protects Against More Toxin
Dr. Philipp Starkl, who is using his fellowship to collaborate with Prof. Stephen J. Galli and his team at the Department of Pathology at Stanford University School of Medicine, summarises the results of the joint study as follows: "Mice, to whom we had previously administered small amounts of honeybee venom, subsequently displayed astonishing resistance to larger volumes of the toxin. As in the case with a vaccination, the body appeared to build a kind of immune protection against the bee venom." Interestingly, however, completely different responses in humans are also known - in some unfortunate people repeated contact with bee venom causes allergic reactions or even an anaphylactic shock. IgE-type antibodies are mainly responsible for this response.

Dr. Starkl and his colleagues investigated the question as to whether these antibodies are also involved in the reactions observed in mice. To establish this, honeybee venom was administered to three different mouse strains, in which the functioning of an immune reaction based on IgE was prevented in different ways. The results showed that, unlike the previously examined "normal" mice strains, these mice were unable to form any protection against honeybee venom. Therefore, IgEs seem to have a positive function in mice. This finding patently contradicts what was already known from humans, in who IgE antibodies are mainly seen as causing allergic reactions. It had been suspected that a positive function existed beyond this (for example in the immune response to parasites); however, it had not been possible to demonstrate it directly up to now.

Evolution Follows Function
The Stanford team though was not very surprised to discover this positive function of IgE. Dr. Starkl, who, together with his Belgian colleague Dr. Thomas Marichal, is co-first author of the current publication, explains: "In our view, the assumption that the function of IgE antibodies is limited to triggering allergic reactions always fell short of the mark. Otherwise, IgEs would surely have been eliminated in the course of evolution, a consideration that also underlies the so-called toxin hypothesis."

According to this hypothesis, the body can build protection against toxic substances using IgE antibodies and allergic reactions. Thus, IgEs would have fulfilled a very important role in human evolution - which only relinquished its significance with the development of increasingly protected lifestyles of humans. Furthermore, according to the hypothesis, allergic reactions are extreme or uncontrolled forms of the protection mechanism. The "underemployment" of this response in modern times could then actually contribute to its tendency to malfunction or overreact.

The toxin hypothesis, which was proposed by Margie Profet in 1991, has been hotly contested up to now - but never been refuted. The research carried out by the FWF Erwin Schrödinger Fellow now provides the first experimental finding that substantiates it - and demonstrates, once again, the importance of keeping an open mind in science.

The original publication can be accessed online.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More Than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Thursday, November 26, 2015
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Wednesday, November 25, 2015
Sleep Deprivation Affects Stem Cells, Reducing Transplant Efficiency
Although the research was done in mice, the findings have possible implications for bone marrow transplants, more properly called hematopoietic stem cell transplants, in humans.
Friday, October 16, 2015
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Friday, October 09, 2015
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Wednesday, October 07, 2015
Tension Helps Heart Cells Develop Normally in the Lab
Stanford engineers have uncovered the important role tension plays in growing heart cells out of the body.
Monday, October 05, 2015
Drug Disarms Deadly C. difficile Bacteria Without Destroying Healthy Gut Flora
A drug that blocks the intestinal pathogen without killing resident, beneficial microbes may prove superior to antibiotics, currently the front-line treatment for the infection.
Friday, September 25, 2015
Virus Re-Engineered to Deliver Targeted Therapies
Researchers stripped a virus of its infectious machinery and turned its benign core into a delivery vehicle that can target sick cells while leaving healthy tissue alone.
Thursday, September 24, 2015
Combination Drug Therapy Shrinks Pancreatic Tumors In Mice
Two drugs that affect the structure and function of DNA have been found to block the growth of pancreatic tumor cells in mice, researchers hope the drugs can soon be tested in humans with the disease.
Thursday, September 24, 2015
Delivering Missing Protein Heals Damaged Hearts in Animals
Researchers have discovered that a particular protein, Fstl1, plays a key role in regenerating dead heart-muscle cells.
Tuesday, September 22, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
Drug Prevents Type 1 Diabetes In Mice
A compound that blocks the synthesis of hyaluronan, a substance generally found in in all body tissue, protected mice from getting Type 1 diabetes. The compound is already approved in Europe and Asia for the treatment of gallbladder disease.
Wednesday, September 16, 2015
New Method for Producing Vital Cancer Drug
Stanford scientists produced a common cancer drug – previously only available from an endangered plant – in a common laboratory plant.
Tuesday, September 15, 2015
Scientists Home In On Origin Of Human, Chimpanzee Facial Differences
A study of species-specific regulation of gene expression in chimps and humans has identified regions important in human facial development and variation.
Monday, September 14, 2015
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Monday, August 24, 2015
Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
How a Genetic Locus Protects Adult Blood-Forming Stem Cells
Mammalian imprinted Gtl2 protects adult hematopoietic stem cells by restricting metabolic activity in the cells' mitochondria.
Genetic Basis of Fatal Flu Side Effect Discovered
A group of people with fatal H1N1 flu died after their viral infections triggered a deadly hyperinflammatory disorder in susceptible individuals with gene mutations linked to the overactive immune response, according to a recent study.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
The MaxSignal Colistin ELISA Test Kit from Bioo Scientific
Kit can help prevent the antibiotic apocalypse by keeping last resort drugs out of the food supply.
"Good" Mozzie Virus Might Hold Key to Fighting Human Disease
Australian scientists have discovered a new virus carried by one of the country’s most common pest mosquitoes.
Non-Disease Proteins Kill Brain Cells
Scientists at the forefront of cutting-edge research into neurodegenerative diseases such as Alzheimer’s and Parkinson’s have shown that the mere presence of protein aggregates may be as important as their form and identity in inducing cell death in brain tissue.
Closing the Loop on an HIV Escape Mechanism
Research team finds that protein motions regulate virus infectivity.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Potential Treatment for Life-Threatening Viral Infections Revealed
The findings point to new therapies for Dengue, West Nile and Ebola.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos