Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Malaria Vaccine Offers New Mode of Protection Against Disease

Published: Friday, November 29, 2013
Last Updated: Friday, November 29, 2013
Bookmark and Share
A novel malaria vaccine developed at Oxford University has shown promising results in the first clinical trial.

The trial was carried out in Oxford by researchers led by Professor Adrian Hill of the Jenner Institute at Oxford University, along with colleagues from the biotechnology company Okairos.

Some of the adult volunteers were completely protected against malaria in this initial study of the vaccine's efficacy.

It's the first time that a vaccine has been shown to have a protective effect through a sufficiently high immune response involving cells called CD8 T cells.

It is CD8 immune cells that are seen to mount a protective response against malaria in similar studies in mice.

Every existing vaccine in use – bar one – generates antibodies. But there are two arms to the body's immune system for fighting infection: antibodies and T cells. And this vaccine aims to stimulate an immune response involving T cells.

CD8 T cells are important because they are the primary killer cells in the immune system. They can attack nearly all types of infected cells – in this case liver cells infected with the malaria parasite. But this first demonstration of a large CD8 response from a vaccine could be relevant for tackling other diseases too.

'The vaccine was found to work by inducing CD8+ T cells that target the malaria parasite in the liver,' explains Professor Hill.

'For years a wide range of technologies have been assessed trying to induce protection through the cellular arm of the immune system with CD8+ T cells. But this is the first time that this has been achieved for any vaccine type against any disease.'

The Phase IIa trial in Oxford involved 36 people in total, of which 14 healthy adults received two different virus-based vaccines with the same malaria antigen eight weeks apart.

Of those 14, three people were protected from the bites of malaria-infected mosquitoes. A further five had delayed onset of malaria, demonstrating that over 90% of the malaria parasites had been killed by the vaccine-induced immune response.

Importantly, the size of the CD8 T cell response in these volunteers correlated with the degree of protection from malaria, suggesting that a sufficiently high cellular immune response is protective.

Ten further volunteers received only one of the vaccines and there were 12 controls. None of these people saw any protection against malaria from mosquito bites on the arm. All volunteers were closely monitored for malaria symptoms throughout, and those getting the disease were treated rapidly with drugs.

The trial results are published in the journal Nature Communications. The study was funded by the Medical Research Council with support from the National Institute for Health Research and the Wellcome Trust.

The results of larger Phase IIb trials of the efficacy of the vaccine in Africa are expected in 2014. They will determine more about the efficacy of this malaria vaccine where it is needed most.

If results continue to be positive, Professor Hill thinks that the best protection against malaria may come from combining the Oxford-developed vaccine with another that targets the sporozoite stage of the malaria parasite's life cycle. One such vaccine developed by GSK is in late-stage clinical trials.

The GSK vaccine called RTS,S works by stimulating antibodies against the malaria parasites before they enter the liver. Those that reach the liver would be mopped up by T cells stimulated by the Oxford vaccine.

Professor Hill and colleagues are currently carrying out a study in the UK to test how the GSK and Oxford vaccines might work together.

Malaria kills more than 660,000 people each year, most of whom are children in Africa.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More Than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Record £16.9m for OxStem
One of the most ambitious Oxford spinouts to date is en route to becoming a powerhouse in age-related regenerative medicine, developing drugs which can treat cancer, neurodegenerative diseases, heart failure, macular degeneration and other major age-related conditions.
Friday, May 13, 2016
Oxford Spinout Raises £10m For Precision System To Treat Disease
Oxford spinout EvOx Therapeutics will harness the body's own precision communications system to deliver drugs to specific parts of the body, with the aim of treating conditions which are currently untreatable – including those affecting the brain, as well as autoimmune diseases and cancers.
Wednesday, May 11, 2016
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Thursday, October 08, 2015
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Tuesday, October 06, 2015
Genes That Protect African Children From Developing Malaria Identified
Variations in DNA at a specific location on the genome that protect African children from developing severe malaria, in some cases nearly halving a child’s chance of developing the life-threatening disease, have been identified in the largest genetic association study of malaria to date.
Friday, October 02, 2015
Photosynthesis Gene Could Help Crops Grow in Adverse Conditions
A gene that helps plants to remain healthy during times of stress has been identified by researchers at Oxford University.
Monday, September 21, 2015
Vaccine for Common Childhood Infection May Finally be Possible
Oxford University researchers have successfully completed the first human trial of a vaccine for RSV, a virus that is particularly dangerous to infants.
Friday, August 14, 2015
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Monday, August 03, 2015
How do Networks Shape the Spread of Disease and Gossip?
A team of mathematicians from Oxford University, University of North Carolina at Chapel Hill, and Rutgers University used a set of mathematical rules to encode how a contagion spreads, and then studied the outcomes of these rules.
Thursday, July 23, 2015
A Combination Of Genes Results In Malaria Drug Resistance
The largest genome-wide study of the malaria parasite finds that the drug resistance occurs because of a key mutation happening on top of 'background' mutations which make the parasite more likely to develop drug resistance later.
Tuesday, January 20, 2015
Metal Test Could Help Diagnose Breast Cancer Early
It may be possible to develop a simple blood test that, by detecting changes in the zinc in our bodies, could help to diagnose breast cancer early.
Thursday, December 11, 2014
Booster Ebola Vaccine Enters First Trials
Trials aim to determine the safety of a candidate booster vaccine.
Thursday, December 04, 2014
Gene Therapy Trial Shows Promise for Type of Blindness
Patients showed improvements in their vision in dim light and two of the six were able to read more lines on the eye chart.
Thursday, January 16, 2014
Neanderthal Viruses Found in Modern Humans
Ancient viruses from Neanderthals have been found in modern human DNA by researchers at Oxford University and Plymouth University.
Tuesday, November 19, 2013
Global Warming Continues; Most Extreme Projections ‘Less Likely’
Observations of the climate system’s response to rising greenhouse gas levels are consistent with conventional estimates of the long-term ‘climate sensitivity’, despite a “warming pause” over the past decade.
Monday, May 20, 2013
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Core-Shell Columns in HPLC: Food Analysis Applications
Explore the most recent applications of core-shell columns in food analysis.
Review of the Analysis of Haemoglobin A1c for Diabetes Diagnostics
This paper aims to clarify methods, units, quality requirements, reference and cutoff limits for hemoglobin A1c (HbA1c) and ratio of blood glucose/HbA1c on the basis of the results from Finnish quality control surveys by comparing them to the literature.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Disrupting Tumour-Promotion in Humans
Researchers have modified an existing protein to represses a specific cancer-promoting ‘message’ within cells.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Vaccine Strategy Targets Multiple Influenza Viruses
Scientists have identified vaccine-induced antibodies that can neutralize strains of influenza virus that infect humans.
Connectome Map More Than Doubles Human Cortex’s Known Regions
Researchers at NIH have developed software that automatically detects the “fingerprint” of each of these areas in an individual’s brain scans.
Discovered Through ‘Big Data’ Analysis
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!