Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Unlock a New Means of Growing Intestinal Stem Cells

Published: Monday, December 02, 2013
Last Updated: Monday, December 02, 2013
Bookmark and Share
Studying these cells could lead to new treatments for diseases ranging from gastrointestinal disease to diabetes.

Researchers at MIT and Brigham and Women’s Hospital have shown that they can grow unlimited quantities of intestinal stem cells, then stimulate them to develop into nearly pure populations of different types of mature intestinal cells. Using these cells, scientists could develop and test new drugs to treat diseases such as ulcerative colitis.

The small intestine, like most other body tissues, has a small store of immature adult stem cells that can differentiate into more mature, specialized cell types. Until now, there has been no good way to grow large numbers of these stem cells, because they only remain immature while in contact with a type of supportive cells called Paneth cells.

In a new study appearing in the Dec. 1 online edition of Nature Methods, the researchers found a way to replace Paneth cells with two small molecules that maintain stem cells and promote their proliferation. Stem cells grown in a lab dish containing these molecules can stay immature indefinitely; by adding other molecules, including inhibitors and activators, the researchers can control what types of cells they eventually become.

“This opens the door to doing all kinds of things, ranging from someday engineering a new gut for patients with intestinal diseases to doing drug screening for safety and efficacy. It’s really the first time this has been done,” says Robert Langer, the David H. Koch Institute Professor, a member of MIT’s Koch Institute for Integrative Cancer Research, and one of the paper’s senior authors.

Jeffrey Karp, an associate professor of medicine at Harvard Medical School and Brigham and Women’s Hospital, is also a senior author of the paper. The paper’s lead author is Xiaolei Yin, a postdoc at the Koch Institute and Brigham and Women’s Hospital.

From one cell, many

The inner layer of the intestines has several critical functions. Some cells are specialized to absorb nutrients from digested food, while others form a barrier that secretes mucus and prevents viruses and bacteria from entering cells. Still others alert the immune system when a foreign pathogen is present.

This layer, known as the intestinal epithelium, is coated with many small indentations known as crypts. At the bottom of each crypt is a small pool of epithelial stem cells, which constantly replenish the specialized cells of the intestinal epithelium, which only live for about five days. These stem cells can become any type of intestinal epithelial cell, but don’t have the pluripotency of embryonic stem cells, which can become any cell type in the body.

If scientists could obtain large quantities of intestinal epithelial stem cells, they could be used to help treat gastrointestinal disorders that damage the epithelial layer. Recent studies in animals have shown that intestinal stem cells delivered to the gut can attach to ulcers and help regenerate healthy tissue, offering a potential new way to treat ulcerative colitis.

Using those stem cells to produce large populations of specialized cells would also be useful for drug development and testing, the researchers say. With large quantities of goblet cells, which help control the immune response to proteins found in food, scientists could study food allergies; with enteroendocrine cells, which release hunger hormones, they could test new treatments for obesity.

“If we had ways of performing high-throughput screens on large numbers of these very specific cell types, we could potentially identify new targets and develop completely new drugs for diseases ranging from inflammatory bowel disease to diabetes,” Karp says.

Controlling cell fate


In 2007, Hans Clevers, a professor at the Hubrecht Institute in the Netherlands, identified a marker for intestinal epithelial stem cells — a protein called Lgr5. Clevers, who is an author of the new Nature Methods paper, also identified growth factors that enable these stem cells to reproduce in small quantities in a lab dish and spontaneously differentiate into mature cells, forming small structures called organoids that mimic the natural architecture of the intestinal lining.

In the new study, the researchers wanted to figure out how to keep stem cells proliferating but stop them from differentiating, creating a nearly pure population of stem cells. This has been difficult to do because stem cells start to differentiate as soon as they lose contact with a Paneth cell.

Paneth cells control two signaling pathways, known as Notch and Wnt, which coordinate cell proliferation, especially during embryonic development. The researchers identified two small molecules, valproic acid and CHIR-99021, that work together to induce stem cells to proliferate and prevent them from differentiating into mature cells.

When the researchers grew mouse intestinal stem cells in a dish containing these two small molecules, they obtained large clusters made of 70 to 90 percent stem cells.

Once the researchers had nearly pure populations of stem cells, they showed that they could drive them to develop into particular types of intestinal cells by adding other factors that influence the Wnt and Notch pathways. “We used different combinations of inhibitors and activators to drive stem cells to differentiate into specific populations of mature cells,” Yin says.

This approach also works in mouse stomach and colon cells, the researchers found. They also showed that the small molecules improved the proliferation of human intestinal stem cells. They are now working on engineering intestinal tissues for patient transplant and developing new ways to rapidly test the effects of drugs on intestinal cells.

Another potential use for these cells is studying the biology that underlies stem cells’ special ability to self-renew and to develop into other cell types, says Ramesh Shivdasani, an associate professor of medicine at Harvard Medical School and Dana-Farber Cancer Institute.

“There are a lot of things we don’t know about stem cells,” says Shivdasani, who was not part of the research team. “Without access to large quantities of these cells, it’s very difficult to do any experiments. This opens the door to a systematic, incisive, reliable way of interrogating intestinal stem cell biology.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
Thursday, September 15, 2016
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
Thursday, September 15, 2016
Linking RNA Structure and Function
Biologists have deciphered a lncRNA structure and used the information to investigate its cellular protein interactions.
Friday, September 09, 2016
Hacking Microbes
Startup’s engineered yeast helps clients produce fragrances and flavors more efficiently.
Thursday, September 08, 2016
Guided Needles Hit the Mark
New sensor could help anesthesiologists place needles for epidurals and other medical procedures.
Thursday, September 08, 2016
Changing Ocean Chemistry Due To Human Activity
More anthropogenic carbon in the northeast Pacific means weaker shells for many marine species.
Wednesday, September 07, 2016
Targeting Neglected Diseases
New enzyme-mapping advancement could help drug development for combating diseases in the developing world.
Wednesday, August 17, 2016
Protecting Privacy in Genomic Databases
System helps ensure databases used in medical research will not leak patients’ personal information.
Wednesday, August 10, 2016
Biopharmaceuticals on Demand
Portable production system would use microbes for manufacturing small amounts of vaccines and therapeutics.
Monday, August 01, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Programmable RNA Vaccines
Tests in mice show the vaccines work against Ebola, influenza, and a common parasite.
Wednesday, July 06, 2016
Seeing RNA at the Nanoscale
MIT researchers have developed a new way to image proteins and RNA inside neurons of brain tissue.
Wednesday, July 06, 2016
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
Friday, July 01, 2016
Wireless, Wearable Toxic-Gas Detector
Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents.
Friday, July 01, 2016
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Atmosphere Acidity Minimised to Preindustrial Levels
Sheet ice study shows acidic pollution of the atmosphere has now almost returned to preindustrial levels.
New Therapeutic Target for Crohn’s Disease
A promising new target for drugs that treat IBD has been identified along with a possible biomarker for IBD severity.
Culex Mosquitoes Do Not Transmit Zika
A study of the Culex species mosquito appears to show that the species does not transmit Zika virus.
Uncovering Water Bear Resilience
A protein identified in water bears can protect DNA of human cells from lethal doses of radiation damage.
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Researchers Find Fungus-Fighting Compound
A compound has been identifed that blocks growth of a fungus responsible for lung infections and allergic reactions.
Analysing 10,000 Cells Simultaneously
New techniquethat traps 10,000 cells on a single chip has potential for cancer screening for individuals.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!