Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Rice Scientists ID New Catalyst for Cleanup of Nitrites

Published: Monday, December 02, 2013
Last Updated: Monday, December 02, 2013
Bookmark and Share
Gold-palladium nanocatalysts set new mark for breakdown of nitrites.

Chemical engineers at Rice University have found a new catalyst that can rapidly break down nitrites, a common and harmful contaminant in drinking water that often results from overuse of agricultural fertilizers.

Nitrites and their more abundant cousins, nitrates, are inorganic compounds that are often found in both groundwater and surface water. The compounds are a health hazard, and the Environmental Protection Agency places strict limits on the amount of nitrates and nitrites in drinking water. While it’s possible to remove nitrates and nitrites from water with filters and resins, the process can be prohibitively expensive.

“This is a big problem, particularly for agricultural communities, and there aren’t really any good options for dealing with it,” said Michael Wong, professor of chemical and biomolecular engineering at Rice and the lead researcher on the new study. “Our group has studied engineered gold and palladium nanocatalysts for several years. We’ve tested these against chlorinated solvents for almost a decade, and in looking for other potential uses for these we stumbled onto some studies about palladium catalysts being used to treat nitrates and nitrites; so we decided to do a comparison.”

Catalysts are the matchmakers of the molecular world: They cause other compounds to react with one another, often by bringing them into close proximity, but the catalysts are not consumed by the reaction.

In a new paper in the journal Nanoscale, Wong’s team showed that engineered nanoparticles of gold and palladium were several times more efficient at breaking down nitrites than any previously studied catalysts. The particles, which were invented at Wong’s Catalysis and Nanomaterials Laboratory, consist of a solid gold core that’s partially covered with palladium.

Over the past decade, Wong’s team has found these gold-palladium composites have faster reaction times for breaking down chlorinated pollutants than do any other known catalysts. He said the same proved true for nitrites, for reasons that are still unknown.

“There’s no chlorine in these compounds, so the chemistry is completely different,” Wong said. “It’s not yet clear how the gold and palladium work together to boost the reaction time in nitrites and why reaction efficiency spiked when the nanoparticles had about 80 percent palladium coverage. We have several hypotheses we are testing out now. ”

He said that gold-palladium nanocatalysts with the optimal formulation were about 15 times more efficient at breaking down nitrites than were pure palladium nanocatalysts, and about 7 1/2 times more efficient than catalysts made of palladium and aluminum oxide.

Wong said he can envision using the gold-palladium catalysts in a small filtration unit that could be attached to a water tap, but only if the team finds a similarly efficient catalyst for breaking down nitrates, which are even more abundant pollutants than nitrites.

“Nitrites form wherever you have nitrates, which are really the root of the problem,” Wong said. “We’re actively studying a number of candidates for degrading nitrates now, and we have some positive leads.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Wednesday, May 25, 2016
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Friday, May 20, 2016
Monovar Drills Down Into Cancer Genome
Rice, MD Anderson develop program to ID mutations in single cancer cells.
Wednesday, May 04, 2016
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
Wednesday, May 04, 2016
Magnetic Nanoparticles May Reveal Early Traces Of Cancer
Rice University students’ computer program aids MD Anderson diagnostic initiative .
Friday, April 29, 2016
Rare DNA Will Have Nowhere To Hide
Two National Institutes of Health grants back Rice University effort to develop new diagnostics.
Friday, April 08, 2016
Scientists Synthesize Anti-Cancer Agent
A team led by Rice University synthetic organic chemist K.C. Nicolaou has developed a new process for the synthesis of a series of potent anti-cancer agents originally found in bacteria.
Monday, March 14, 2016
‘Big Data’ Drills Down Into Metabolic Details
Rice University bioengineers introduce efficient way to analyze, compare tissue-specific pathways.
Monday, March 14, 2016
Cancer Cells’ Evasive Action Revealed
Rice, MD Anderson scientists analyze suppression of proteins key to immune recognition.
Friday, March 04, 2016
DNA Analysis in the Fast Lane
Rice bioengineers' method should lead to better database of thermal behaviors.
Thursday, January 21, 2016
Bacteria Attack Lignin with Enzymatic Tag Team
Team from Rice, University of Wisconsin-Madison shows how nature handles lignin.
Tuesday, January 12, 2016
Obstacles Not Always a Hindrance to Proteins
Rice researchers’ theory finds blocked path sometimes speeds DNA sequence search.
Friday, December 11, 2015
Red Means ‘Go’ to Therapeutic Viruses
Rice University scientists use light to switch viral activity and deliver cargoes to cells.
Thursday, December 03, 2015
Chemical Design Made Easier
Rice University scientists prepare elusive organocatalysts for drug and fine chemical synthesis.
Wednesday, November 25, 2015
Biomarker Finder Adjusts On the Fly
Rice University scientists build better tool to find signs of disease.
Thursday, October 22, 2015
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
A Boost for Regenerative Medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Untangling Disease-Related Protein Misfolding
Work advances understanding of genetic forms of thrombosis, emphysema, cirrhosis of the liver, neurodegenerative diseases and inflammation, among others.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!