Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Rice Scientists ID New Catalyst for Cleanup of Nitrites

Published: Monday, December 02, 2013
Last Updated: Monday, December 02, 2013
Bookmark and Share
Gold-palladium nanocatalysts set new mark for breakdown of nitrites.

Chemical engineers at Rice University have found a new catalyst that can rapidly break down nitrites, a common and harmful contaminant in drinking water that often results from overuse of agricultural fertilizers.

Nitrites and their more abundant cousins, nitrates, are inorganic compounds that are often found in both groundwater and surface water. The compounds are a health hazard, and the Environmental Protection Agency places strict limits on the amount of nitrates and nitrites in drinking water. While it’s possible to remove nitrates and nitrites from water with filters and resins, the process can be prohibitively expensive.

“This is a big problem, particularly for agricultural communities, and there aren’t really any good options for dealing with it,” said Michael Wong, professor of chemical and biomolecular engineering at Rice and the lead researcher on the new study. “Our group has studied engineered gold and palladium nanocatalysts for several years. We’ve tested these against chlorinated solvents for almost a decade, and in looking for other potential uses for these we stumbled onto some studies about palladium catalysts being used to treat nitrates and nitrites; so we decided to do a comparison.”

Catalysts are the matchmakers of the molecular world: They cause other compounds to react with one another, often by bringing them into close proximity, but the catalysts are not consumed by the reaction.

In a new paper in the journal Nanoscale, Wong’s team showed that engineered nanoparticles of gold and palladium were several times more efficient at breaking down nitrites than any previously studied catalysts. The particles, which were invented at Wong’s Catalysis and Nanomaterials Laboratory, consist of a solid gold core that’s partially covered with palladium.

Over the past decade, Wong’s team has found these gold-palladium composites have faster reaction times for breaking down chlorinated pollutants than do any other known catalysts. He said the same proved true for nitrites, for reasons that are still unknown.

“There’s no chlorine in these compounds, so the chemistry is completely different,” Wong said. “It’s not yet clear how the gold and palladium work together to boost the reaction time in nitrites and why reaction efficiency spiked when the nanoparticles had about 80 percent palladium coverage. We have several hypotheses we are testing out now. ”

He said that gold-palladium nanocatalysts with the optimal formulation were about 15 times more efficient at breaking down nitrites than were pure palladium nanocatalysts, and about 7 1/2 times more efficient than catalysts made of palladium and aluminum oxide.

Wong said he can envision using the gold-palladium catalysts in a small filtration unit that could be attached to a water tap, but only if the team finds a similarly efficient catalyst for breaking down nitrates, which are even more abundant pollutants than nitrites.

“Nitrites form wherever you have nitrates, which are really the root of the problem,” Wong said. “We’re actively studying a number of candidates for degrading nitrates now, and we have some positive leads.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bacteria Use DNA Replication to Time Key Decision
Rice University researchers have found that in spore-forming bacteria, chromosomal locations of genes can couple the DNA replication cycle to critical decisions about whether to reproduce or form spores.
Monday, July 13, 2015
Massive Genome Shift in one Generation
A team of biologists has discovered that an agricultural pest that began plaguing U.S. apple growers in the 1850s likely did so after undergoing extensive and genome-wide changes in a single generation.
Tuesday, June 16, 2015
DNA Mutations get Harder to Hide
Rice University researchers have developed a method to detect rare DNA mutations with an approach hundreds of times more powerful than current methods.
Wednesday, May 27, 2015
Amniotic Stem Cells Demonstrate Healing Potential
Rice University, Texas Children’s Hospital study proves cells promote vasculature in hydrogel therapy.
Friday, April 10, 2015
Cells Exercise Suboptimal Strategy to Survive
Rice University study shows it’s not always good for cells’ metabolism to work at peak efficiency.
Thursday, April 09, 2015
Designing A Better Way To Study Stomach Flu
Texas Medical Center team aims to improve research of gastrointestinal disease.
Wednesday, March 18, 2015
Worm Virus Details Come to Light
Rice University scientists have won a race to find the crystal structure of rare nematode virus, known to infect the most abundant animal on Earth.
Wednesday, August 20, 2014
Flu’s Mechanisms Clues Uncovered
Researchers from Rice University and Baylor College of Medicine have analyzed how influenza-related proteins help infect cells.
Tuesday, August 05, 2014
Water-cleanup Catalysts Tackle Biomass Upgrading
Rice University researchers register 4th ‘volcano plot’ for palladium-gold catalysts.
Tuesday, July 01, 2014
Researchers Tune in to Protein Pairs
Rice University team quantifies how mutations affect cell signaling in bacteria.
Tuesday, January 28, 2014
New Statistical Tools Being Developed for Mining Cancer Data
Team from Rice, BCM, UT Austin tackling big data variety.
Monday, December 02, 2013
Bad Proteins Branch Out
Rice researchers find misfolded proteins are capable of forming tree-like aggregates.
Monday, December 02, 2013
Have iPod, Will Test for Drug Toxicity
Rice students help Houston-based start-up create drug toxicity app.
Thursday, October 31, 2013
Physicists Decode Decision Circuit of Cancer Metastasis
Rice U. research reveals three-way genetic switch for cancer metastasis.
Thursday, October 31, 2013
Rice Writes Rules for Gene-Therapy Vectors
Researchers compute, then combine benign viruses to fight disease.
Thursday, August 15, 2013
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
How Cholesterol Leads to Clogged Arteries
A new study shows that when immune cells called neutrophils are exposed to cholesterol crystals, they release large extracellular web-like structures that trigger the production of inflammatory molecules linked to artherosclerosis.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!