Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Funding a Cure for HIV/AIDS

Published: Tuesday, December 03, 2013
Last Updated: Tuesday, December 03, 2013
Bookmark and Share
NIH plans to invest an additional $100 million over the next three fiscal years.

At a White House event today to mark the 25th annual World AIDS Day, President Obama announced that the National Institutes of Health plans to redirect AIDS research funds to expand support for research directed toward a cure for HIV. 

In the three decades since AIDS was first reported, the NIH has been the global leader in research to understand, prevent, diagnose, and treat HIV infection and its many associated conditions. NIH-funded researchers — in partnership with academia and the biotechnology and pharmaceutical industries — have helped develop more than 30 life-saving antiretroviral drugs and drug combinations for treating HIV infection. These antiretroviral drugs have transformed life with HIV infection for those who have access to and can tolerate the therapies. However, treatment requires lifelong access and adherence to these medications and management of treatment-related toxicities and clinical complications.

Important recent advances in basic and therapeutics research aimed at eliminating viral reservoirs in the body are spurring scientists to design and conduct research aimed at a cure or lifelong remission of HIV infection. Key stakeholders from academia, government, foundations, advocacy groups and industry have concluded that developing a cure for HIV is one of the most important biomedical challenges of the 21st century. This will require an extraordinary, collaborative global effort, including public-private partnerships and innovative alliances to share scientific expertise and accelerate the search for a cure.

In a presentation at the White House event today, Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases, the component of NIH with the largest investment in HIV/AIDS research, discussed the public health and scientific rationale for expanded research in this area.

“Although the HIV/AIDS pandemic can theoretically be ended with a concerted and sustained scale-up of implementation of existing tools for HIV prevention and treatment, the development of a cure is critically important, as it may not be feasible for tens of millions of people living with HIV infection to access and adhere to a lifetime of antiretroviral therapy,” Dr. Fauci noted. “Our growing understanding of the cellular hiding places or ‘reservoirs’ of HIV, the development of new strategies to minimize or deplete these reservoirs, and encouraging reports of a small number of patients who have little or no evidence of virus despite having halted antiretroviral therapy, all suggest that the time is ripe to pursue HIV cure research with vigor.”

Funding for these new initiatives will come from existing resources and a redirection of funds from expiring AIDS research grants over the next three years. NIH Director Francis S. Collins, M.D., Ph.D., said, “Flat budgets and cuts from sequestration have had a profound and damaging impact on biomedical research, but we must continue to find ways to support cutting-edge science, even in this environment. AIDS research is an example of an area where hard-won progress over many years has resulted in new and exciting possibilities in basic and clinical science in AIDS that must be pursued.”

Jack Whitescarver, Ph.D., director of the Office of AIDS Research, a component of the Office of the Director of NIH, said, “We have listened very carefully to the scientific consensus of experts from within the NIH and around the world. We have been building the portfolio of HIV cure research over the past few years, and now is the time to accelerate our research focused specifically toward the goal of sustained or lifelong remission, in which patients control or even eliminate HIV without the need for lifelong antiretroviral therapy.”

It is anticipated that a significant portion of the new investment will support basic research, which will also benefit all other areas of AIDS research, as well as research on other diseases. These studies will include research on viral reservoirs, viral latency, and viral persistence, as well as studies of neutralizing antibodies. Research on animal models, drug development and preclinical testing of more potent antiretroviral compounds capable of diminishing viral reservoirs, and clinical research, including studies on therapeutic vaccines and other immune enhancers, will also be supported.

Other high-priority AIDS research will continue to be supported. These priorities include: prevention research, including vaccines, microbicides, and other biomedical and behavioral prevention strategies, such as the use of antiretroviral drugs as prevention; research to develop better, less toxic treatments and to investigate how genetic determinants, sex, gender, race, age, nutritional status, treatment during pregnancy, and other factors, including stigma and adherence, interact to affect treatment success or failure and/or disease progression; and studies to address the increased incidence of malignancies, cardiovascular, neurologic, and metabolic complications, and premature aging associated with long-term HIV disease and antiretroviral treatment. Through all of this research, NIH is committed to the ultimate goal of a world without AIDS.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Drug Used To Treat HIV Linked to Lower Bone Mass in Newborns
NIH study finds mothers’ use of tenofovir tied to lower bone mineral content in babies.
Wednesday, September 30, 2015
Repairing Nerve Pathways With 3-D Printing
A novel 3-D printing approach was used to create custom scaffolds that helped damaged rat nerves regenerate and improved the animals’ ability to walk.
Tuesday, September 29, 2015
Bone Risks Linked to Genetic Variants
A large-scale genomic study uncovered novel genetic variants and led researchers to an unexpected gene that affects bone density and fracture risk.
Tuesday, September 29, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
NIH Launches Landmark Study On Substance Use And Adolescent Brain Development
Thirteen grants awarded to look at cognitive and social development in approximately 10,000 children.
Monday, September 28, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Grants Awarded to Explore the Genome’s Regulatory Regions that Affect Disease Risk
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Tuesday, September 22, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Beth Israel Cardiology Team Awarded $3 Million by NIH
Work will help predict outcomes in patients with heart disease.
Friday, September 18, 2015
Diet, Exercise, Smoking Habits and Genes Interact To Affect and Risk
NIH-funded study points to converging factors that drive disease-related inflammation.
Thursday, September 17, 2015
Scientific News
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Study Removes Cancer Doubt for Multiple Sclerosis Drug
Researchers from Queen Mary University of London are calling on the medical community to reconsider developing a known drug to treat people with relapsing Multiple sclerosis after new evidence shows it does not increase the risk of cancer as previously thought.
Self-Propelled Powder to Stop Bleeding
UBC researchers have created the first self-propelled particles capable of delivering coagulants against the flow of blood to treat severe bleeding, a potentially huge advancement in trauma care.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Antibody Treatment Efficacious in Psoriasis
An experimental, biologic treatment, brodalumab, achieved 100 percent reduction in psoriasis symptoms in twice as many patients as a second, commonly used treatment, according to the results of a multicenter clinical trial led by Mount Sinai researchers.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Probing the Forces Involved in Creating The Mitotic Spindle
Scientists at The Rockefeller University reveal new insights into the mechanical forces that govern elements of the mitotic spindle formation.
Identifying Cancer’s Food Sensors May Help to Halt Tumour Growth
Oxford University researchers have identified a protein used by tumours to help them detect food supplies. Initial studies show that targeting the protein could restrict cancerous cells’ ability to grow.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos