Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Storing Carbon in the Arctic

Published: Wednesday, December 04, 2013
Last Updated: Wednesday, December 04, 2013
Bookmark and Share
While the Arctic Ocean is largely a carbon sink, researchers find parts are also a source of atmospheric carbon dioxide.

For the past three decades, as the climate has warmed, the massive plates of sea ice in the Arctic Ocean have shrunk: In 2007, scientists observed nearly 50 percent less summer ice than had been seen in 1980.

Dramatic changes in ice cover have, in turn, altered the Arctic ecosystem — particularly in summer months, when ice recedes and sunlight penetrates surface waters, spurring life to grow. Satellite images have captured large blooms of phytoplankton in Arctic regions that were once relatively unproductive. When these organisms die, a small portion of their carbon sinks to the deep ocean, creating a sink, or reservoir, of carbon.

Now researchers at MIT have found that with the loss of sea ice, the Arctic Ocean is becoming more of a carbon sink. The team modeled changes in Arctic sea ice, temperatures, currents, and flow of carbon from 1996 to 2007, and found that the amount of carbon taken up by the Arctic increased by 1 megaton each year.

But the group also observed a somewhat paradoxical effect: A few Arctic regions where waters were warmest were actually less able to store carbon. Instead, these regions — such as the Barents Sea, near Greenland — were a carbon source, emitting carbon dioxide to the atmosphere.

While the Arctic Ocean as a whole remains a carbon sink, MIT principal research scientist Stephanie Dutkiewicz says places like the Barents Sea paint a more complex picture of how the Arctic is changing with global warming.

“People have suggested that the Arctic is having higher productivity, and therefore higher uptake of carbon,” Dutkiewicz says. “What’s nice about this study is, it says that’s not the whole story. We’ve begun to pull apart the actual bits and pieces that are going on.”

A paper by Dutkiewicz and co-authors Mick Follows and Christopher Hill of MIT, Manfredi Manizza of the Scripps Institute of Oceanography, and Dimitris Menemenlis of NASA’s Jet Propulsion Laboratory is published in the journal Global Biogeochemical Cycles.

The ocean’s carbon cycle

The cycling of carbon in the oceans is relatively straightforward: As organisms like phytoplankton grow in surface waters, they absorb sunlight and carbon dioxide from the atmosphere. Through photosynthesis, carbon dioxide builds cell walls and other structures; when organisms die, some portion of the plankton sink as organic carbon to the deep ocean. Over time, bacteria eat away at the detritus, converting it back into carbon dioxide that, when stirred up by ocean currents, can escape into the atmosphere.

The MIT group developed a model to trace the flow of carbon in the Arctic, looking at conditions in which carbon was either stored or released from the ocean. To do this, the researchers combined three models: a physical model that integrates temperature and salinity data, along with the direction of currents in a region; a sea ice model that estimates ice growth and shrinkage from year to year; and a biogeochemistry model, which simulates the flow of nutrients and carbon, given the parameters of the other two models.

The researchers modeled the changing Arctic between 1996 and 2007 and found that the ocean stored, on average, about 58 megatons of carbon each year — a figure that increased by an average of 1 megaton annually over this time period.

These numbers, Dutkiewicz says, are not surprising, as the Arctic has long been known to be a carbon sink. The group’s results confirm a widely held theory: With less sea ice, more organisms grow, eventually creating a bigger carbon sink.

A new counterbalance

However, one finding from the group muddies this seemingly linear relationship. Manizza found a discrepancy between 2005 and 2007, the most severe periods of sea ice shrinkage. While the Arctic lost more ice cover in 2007 than in 2005, less carbon was taken up by the ocean in 2007 — an unexpected finding, in light of the theory that less sea ice leads to more carbon stored.

Manizza traced the discrepancy to the Greenland and Barents seas, regions of the Arctic Ocean that take in warmer waters from the Atlantic. (In warmer environments, carbon is less soluble in seawater.) Manizza observed this scenario in the Barents Sea in 2007, when warmer temperatures caused more carbon dioxide to be released than stored.

The results point to a subtle balance: An ocean’s carbon flow depends on both water temperature and biological activity. In warmer waters, carbon is more likely to be expelled into the atmosphere; in waters with more biological growth — for example, due to less sea ice — carbon is more likely to be stored in ocean organisms.

In short, while the Arctic Ocean as a whole seems to be storing more carbon than in previous years, the increase in the carbon sink may not be as large as scientists had previously thought.

“The Arctic is special in that it’s certainly a place where we see changes happening faster than anywhere else,” Dutkiewicz says. “Because of that, there are bigger changes in the sea ice and biology, and therefore possibly to the carbon sink.”

Manizza adds that while the remoteness of the Arctic makes it difficult for scientists to obtain accurate measurements, more data from this region “can both inform us about the change in the polar area and make our models highly reliable for policymaking decisions.”

This research was supported by the National Science Foundation and the National Oceanic and Atmospheric Administration.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Unique Visual Stimulation May Be New Treatment for Alzheimer’s
Noninvasive technique reduces beta amyloid plaques in mouse models of Alzheimer’s disease.
Thursday, December 08, 2016
How the Brain Recognizes Faces
Machine-learning system spontaneously reproduces aspects of human neurology.
Wednesday, December 07, 2016
Radiation-Free Imaging in the Brain
Scientists create sensors that use proteins to detect particular targets through induced blood flow changes.
Monday, December 05, 2016
New Method for Analyzing Crystal Structure
Exotic materials called photonic crystals reveal their internal characteristics with new method.
Monday, November 28, 2016
Biomarker Guiding Cancer Therapy
Biologists link levels of Mena protein to breast cancer cells’ sensitivity to chemotherapy.
Tuesday, November 22, 2016
Capsule Achieves Long-Term Drug Delivery
Novel drug delivery method could aid in elimination of malaria and treatment of many other diseases.
Monday, November 21, 2016
Synthetic Cells Isolate Genetic Circuits
Encapsulating molecular components in artificial membranes offers more flexibility in designing circuits.
Tuesday, November 15, 2016
Turning Greenhouse Gas into Gasoline
New catalyst provides design principles for producing fuels from carbon dioxide emissions.
Tuesday, November 15, 2016
New Approach Against Salmonella
Researchers have developed a strategy to immunize against microbes that invade the gastrointestinal tract, including Salmonella.
Tuesday, November 08, 2016
Laser Particles Could Provide Sharper Tissue Images
New imaging technique stimulates particles to emit laser light, could create higher-resolution images.
Tuesday, November 08, 2016
Engineers Design New Weapon Against Bacteria
Researchers have successfully engineered antimicrobial peptides that can kill bacterial strains resistant to existing antibiotics.
Thursday, November 03, 2016
Predicting Cancer Cells’ Response to Chemotherapy
Researcher develop method for testing cell ability to perform different types of DNA repair, which can reveal tumors’ sensitivity to drugs.
Wednesday, November 02, 2016
Nanobionic Spinach Detects Dangerous Chemicals
Scientists have changed spinach plants into biosensors that can detect harful chemicals and wirelessly relay the information.
Tuesday, November 01, 2016
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
Friday, October 28, 2016
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Tuesday, October 25, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Unique Visual Stimulation May Be New Treatment for Alzheimer’s
Noninvasive technique reduces beta amyloid plaques in mouse models of Alzheimer’s disease.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Diabetes Missing Link Discovered
Researchers from the University of Auckland have shown that beta catenin plays a vital role in the control of insulin release from the pancreas.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!