Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Structure of Key Pain-Related Protein Unveiled

Published: Friday, December 06, 2013
Last Updated: Friday, December 06, 2013
Bookmark and Share
In a technical tour de force, scientists have determined, at near-atomic resolution, the structure of a protein that plays a central role in the perception of pain and heat.

Led by UCSF postdoctoral fellows Erhu Cao, PhD, and Maofu Liao, PhD, the new research will offer fresh insights to drug designers searching for new and better pain treatments, but it also is a watershed for the field of structural biology, which aims to discover how proteins are physically constructed in order to better understand their function.

Until now the method used in the new research, known as electron cryo-microscopy, or cryo-EM, was thought to be incapable of visualizing small proteins in such great detail.

“The impact will be broad,” said electron microscopist Yifan Cheng, PhD, UCSF associate professor of biochemistry and biophysics and co-senior author of two new papers that report the structure of the protein, known as TRPV1 (pronounced “trip-vee-one”), at a resolution of 3.4 Angstroms. (For comparison, a sheet of paper is about 1 million Angstroms thick.) “In the past, people never believed that you would be able to use this method to get this kind of resolution – it was thought to be impossible. This opens up a lot of opportunity.”

The findings are published in the Dec. 5 issue of Nature.

Activating TRPV1

TRPV1 has unique properties that have intrigued both biologists and the general public since it was first identified in 1997 by David Julius, PhD, professor and chair of UCSF’s Department of Physiology and co-senior author of the new cryo-EM papers.

Found in abundance in sensory nerve cells, TRPV1 proteins are ion channels: they form pores in cell membranes through which ions such as calcium may pass, altering the cells’ propensity to generate action potentials and pass on signals to other neurons.

But unlike other ion channels, TRPV1 responds to either chemical signals or temperature changes. For example, TRPV1 will change its shape to open its channel in the presence of capsaicin, the pungent compound that lends chili peppers their fiery zing, but also in response to temperatures high enough to elicit pain.

Julius and colleagues have shown that a range of pain-inducing toxins and inflammatory compounds derived from sources as diverse as spider toxins and plants will also activate TRPV1, links that have made the protein the focus of intense interest among drug developers.

The first of the two new papers in Nature describes the structure of TRPV1 in its resting state, while the second shows how the TRPV1 channel changes shape when bound to a spider toxin and a capsaicin-like compound. The visualizations support a “two-gate” model of TRPV1 activation in which different sections of the channel can change conformation in response to different chemical agents, information that will be valuable to drug designers hoping to modulate the pain response by precisely controlling TRPV1 gating.

“It’s a bit like seeing snapshots of the channel closed, then partially opened, then fully opened, which is exceedingly rare for an ion channel,” Julius said.

Zooming Into the Protein

Before the new Nature papers, said Cheng, “the best resolution for structures of TRPV1 and similar proteins was about 15 to 20 Angstroms, and many of the structures derived from the low-resolution data lacked sufficient detail to be mechanistically informative.” According to Julius, many structural biologists have considered cryo-EM to be inherently inferior to X-ray crystallography, which in the best cases can achieve resolutions of less than 2 Angstroms, with some dismissing cryo-EM as “blob-ology.”

But as its name suggests, X-ray crystallography requires that proteins of interest be crystallized, which can be extremely difficult to achieve with proteins like TRPV1 that are embedded in cell membranes. Such proteins, known as integral membrane proteins, are crucial players in important realms of biology, including cell signaling and the actions of drugs.

Beginning about four years ago, Cao, a postdoctoral associate in the Julius laboratory who shares first authorship with Liao on the two new papers, began to create highly stable, functional copies of TRPV1 that he hoped to use in X-ray crystallography studies, but the protein stubbornly resisted crystallization.

“We wondered,” said Julius, “Is there another way to get structural information out of this beautifully well behaved and functional protein in the absence of having crystals?”

In a hallway encounter, Julius learned that Cheng and David A. Agard, PhD, professor of biochemistry and biophysics and a Howard Hughes Medical Institute (HHMI) investigator were making significant technical advances in cryo-EM at UCSF’s Keck Advanced Microscopy Laboratory. He encouraged Cao to collaborate with Liao, a postdoctoral fellow in Cheng’s lab, on cryo-EM studies of TRPV1.

In cryo-EM, a sample is created by placing many copies of a protein, called single particles, in an aqueous solution. The sample is plunged into liquid ethane, which cools the solution at the rate of 100,000 degrees Celsius per second, suspending the particles at myriad orientations at minus 172 degrees Celsius in a protective glassy ice.

An electron microscope is then used to image the sample, and researchers feed images of the particles into computers, which combine the information from the many two-dimensional views to calculate the object’s three-dimensional structure.

With support from HHMI and the National Science Foundation (through an American Recovery and Reinvestment Act Major Research Instrumentation grant), Agard and colleagues collaborated with Lawrence Berkeley National Laboratory and an industrial partner, Pleasanton, Calif.-based Gatan Inc., to design and develop a new camera for cryo-EM. The new device directly captures electrons rather than first converting electrons to light, as did previous cameras.

Meanwhile, taking advantage of the new camera’s 400 frames-per-second speed, Xueming Li, PhD, a postdoctoral associate in the Cheng and Agard labs, devised a motion-correction algorithm that further improved resolution. The combined innovations in hardware and software, reported in Nature Methods last May, resulted in a great improvement over conventional cryo-EM.

“The picture is like a movie, and you can compensate for minute movements of the sample,” said Cheng. “Now we can record every single image of the sample at 3-Angstrom resolution.”

Using these new cryo-EM technologies, in a matter of months Cao and Liao visualized TRPV1 at 3.4 Angstroms, an unprecedented achievement in single-particle cryo-EM of integral membrane proteins.

The Power of Visualization

Now that they have successfully visualized TRPV1 bound to some of its chemical partners, the team hopes to determine how the protein changes shape when exposed to heat, by first heating the sample and then quickly cooling it for imaging.

Julius said that the ability to accurately capture a protein’s shape changes is one of the great strengths of cryo-EM. He anticipates that many structural biologists, even those who favor X-ray crystallography, will add cryo-EM to their toolkit, thanks to advances made in Cheng and Agard’s UCSF labs.

“These papers report the structure of TRPV1, but they also showcase the utility of cryo-EM as a method for structure determination, and that it’s also potentially a very powerful technique for looking at a protein in multiple conformations,” he said.

Julius said that despite the fact that the research team used new methods to determine TRPV1’s structure, his long acquaintance with the biochemical aspects of the protein gives him great confidence in its accuracy.

And even though he could almost visualize TRPV1 in his mind’s eye after more than 15 years’ work on the protein, he said there is something “primal” about seeing images of single TRPV1 particles arrayed on a computer monitor.

“When you see the structure of TRPV1, and you know that it fits the data so well, there’s a kind of visceral, emotional reaction where you look at it and you think, ‘Now we really know what this thing looks like.’”

Cheng agreed. “Seeing is believing,” he said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cat Stem Cell Therapy Gives Humans Hope
By the time Bob the cat came to the UC Davis veterinary hospital, he had used up most of his nine lives.
Monday, February 08, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Toxic Pollutants Found in Fish Across the World's Oceans
Scripps researchers' analysis shows highly variable pollutant concentrations in fish meat.
Friday, January 29, 2016
Key Enzyme in Pierce’s Disease Grapevine Damage Uncovered
UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce’s disease, which annually costs California’s grape and wine industries more than $100 million.
Wednesday, January 13, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
Genome Sequencing May Save California's Legendary Sugar Pine
The genome of California’s legendary sugar pine, which naturalist John Muir declared to be “king of the conifers” more than a century ago, has been sequenced by a research team led by UC Davis scientists.
Thursday, December 17, 2015
Cellular “ORACLs” to Aid Drug Discovery
New approach for finding therapeutics is inspired by face-recognition software.
Wednesday, December 16, 2015
New Virus Disovered, Linked To Hepatitis C
Study is first to reveal entire genetic makeup of human pegivirus 2.
Tuesday, December 15, 2015
CRISPR-Cas9 Helps Uncover Genetics of Exotic Organisms
A new study illustrates the ease with which CRISPR-Cas9 can knock out genes in exotic animals to learn how those genes control growth and development.
Friday, December 11, 2015
UC Davis Cracks the Walnut Genome
Scientists at the University of California, Davis, have for the first time sequenced the genome of a commercial walnut variety.
Friday, December 11, 2015
‘Purity’ Of Tumor Samples May Significantly Bias Genomic Analyses
Non-cancerous tumor components influence research findings, clinical classifications, study shows.
Monday, December 07, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
Embryonic Switch for Cancer Stem Cell Generation
An international team of scientists report that decreases in a specific group of proteins trigger changes in the cancer microenvironment that accelerate growth and development of therapy-resistant cancer stem cells (CSCs).
Wednesday, December 02, 2015
New Organic Plant Breeding Effort Launched
A new effort to provide California growers with seeds for tomato, bean, pepper and other crop varieties that are specially bred for organic farming has been launched at UC Davis.
Tuesday, December 01, 2015
When it Comes to Breast Cancer, Common Pigeon is No Bird Brain
If pigeons went to medical school and specialized in pathology or radiology, they’d be pretty good at distinguishing digitized microscope slides and mammograms of normal vs. cancerous breast tissue, a new study has found.
Monday, November 30, 2015
Scientific News
Microdroplet Reactors Mimic Living Systems
Researchers use microdroplets to study non-equilibrium reactions like those in living organisms.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Envigo Rat Models Proven to be Susceptible to Intra-Vaginal HSV-2 Infection and Protectable
Scientific findings establish the effectiveness of new approach to investigate the protective effects of vaccine candidates and anti-viral microbodies and to study asymptomatic primary genital HSV-2 infection.
Food Triggers Creation of Regulatory T Cells
IBS researchers document how normal diet establishes immune tolerance conditions in the small intestine.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Therapeutic Approach Gives Hope for Multiple Myeloma
A new therapeutic approach tested by a team from Maisonneuve-Rosemont Hospital (CIUSSS-EST, Montreal) and the University of Montreal gives promising results for the treatment of multiple myeloma, a cancer of the bone marrow currently considered incurable with conventional chemotherapy and for which the average life expectancy is about 6 or 7 years.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!