Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Speeding up Gene Discovery

Published: Friday, December 13, 2013
Last Updated: Friday, December 13, 2013
Bookmark and Share
New gene-editing system enables large-scale studies of gene function.

Since the completion of the Human Genome Project, which identified nearly 20,000 protein-coding genes, scientists have been trying to decipher the roles of those genes. A new approach developed at MIT, the Broad Institute, and the Whitehead Institute should speed up the process by allowing researchers to study the entire genome at once.

The new system, known as CRISPR, allows researchers to permanently and selectively delete genes from a cell’s DNA. In two new papers, the researchers showed that they could study all the genes in the genome by deleting a different gene in each of a huge population of cells, then observing which cells proliferated under different conditions.

“With this work, it is now possible to conduct systematic genetic screens in mammalian cells. This will greatly aid efforts to understand the function of both protein-coding genes as well as noncoding genetic elements,” says David Sabatini, a member of the Whitehead Institute, MIT professor of biology, and a senior author of one of the papers, both of which appear in this week’s online edition of Science.

Using this approach, the researchers were able to identify genes that allow melanoma cells to proliferate, as well as genes that confer resistance to certain chemotherapy drugs. Such studies could help scientists develop targeted cancer treatments by revealing the genes that cancer cells depend on to survive.

Feng Zhang, the W.M. Keck Assistant Professor in Biomedical Engineering and senior author of the other Science paper, developed the CRISPR system by exploiting a naturally occurring bacterial protein that recognizes and snips viral DNA. This protein, known as Cas9, is recruited by short RNA molecules called guides, which bind to the DNA to be cut. This DNA-editing complex offers very precise control over which genes are disrupted, by simply changing the sequence of the RNA guide.

“One of the things we’ve realized is that you can easily reprogram these enzymes with a short nucleic-acid chain. This paper takes advantage of that and shows that you can scale that to large numbers and really sample across the whole genome,” says Zhang, who is also a member of MIT’s McGovern Institute for Brain Research and the Broad Institute.

Genome-wide screens

For their new paper, Zhang and colleagues created a library of about 65,000 guide RNA strands that target nearly every known gene. They delivered genes for these guides, along with genes for the CRISPR machinery, to human cells. Each cell took up one of the guides, and the gene targeted by that guide was deleted. If the gene lost was necessary for survival, the cell died.

“This is the first work that really introduces so many mutations in a controlled fashion, which really opens a lot of possibilities in functional genomics,” says Ophir Shalem, a Broad Institute postdoc and one of the lead authors of the Zhang paper, along with Broad Institute postdoc Neville Sanjana.

This approach enabled the researchers to identify genes essential to the survival of two populations of cells: cancer cells and pluripotent stem cells. The researchers also identified genes necessary for melanoma cells to survive treatment with the chemotherapy drug vemurafenib.

In the other paper, led by Sabatini and Eric Lander, the director of the Broad Institute and an MIT professor of biology, the research team targeted a smaller set of about 7,000 genes, but they designed more RNA guide sequences for each gene. The researchers expected that each sequence would block its target gene equally well, but they found that cells with different guides for the same gene had varying survival rates.

“That suggested that there were intrinsic differences between guide RNA sequences that led to differences in their efficiency at cleaving the genomic DNA,” says Tim Wang, an MIT graduate student in biology and lead author of the paper.

From that data, the researchers deduced some rules that appear to govern the efficiency of the CRISPR-Cas9 system. They then used those rules to create an algorithm that can predict the most successful sequences to target a given gene.

“These papers together demonstrate the extraordinary power and versatility of the CRISPR-Cas9 system as a tool for genomewide discovery of the mechanisms underlying mammalian biology,” Lander says. “And we are just at the beginning: We’re still uncovering the capabilities of this system and its many applications.”

Efficient alternative

The researchers say that the CRISPR approach could offer a more efficient and reliable alternative to RNA interference (RNAi), which is currently the most widely used method for studying gene functions. RNAi works by delivering short RNA strands known as shRNA that destroy messenger RNA (mRNA), which carries DNA’s instructions to the rest of the cell.

The drawback to RNAi is that it targets mRNA and not DNA, so it is impossible to get 100 percent elimination of the gene. “CRISPR can completely deplete a given protein in a cell, whereas shRNA will reduce the levels but it will never reach complete depletion,” Zhang says.

Michael Elowitz, a professor of biology, bioengineering, and applied physics at the California Institute of Technology, says the demonstration of the new technique is “an astonishing achievement.”

“Being able to do things on this enormous scale, at high accuracy, is going to revolutionize biology, because for the first time we can start to contemplate the kinds of comprehensive and complex genetic manipulations of cells that are necessary to really understand how complex genetic circuits work,” says Elowitz, who was not involved in the research.

In future studies, the researchers plan to conduct genomewide screens of cells that have become cancerous through the loss of tumor suppressor genes such as BRCA1. If scientists can discover which genes are necessary for those cells to thrive, they may be able to develop drugs that are highly cancer-specific, Wang says.

This strategy could also be used to help find drugs that counterattack tumor cells that have developed resistance to existing chemotherapy drugs, by identifying genes that those cells rely on for survival.

The researchers also hope to use the CRISPR system to study the function of the vast majority of the genome that does not code for proteins. “Only 2 percent of the genome is coding. That’s what these two studies have focused on, that 2 percent, but really there’s that other 98 percent which for a long time has been like dark matter,” Sanjana says.

The research from the Lander/Sabatini group was funded by the National Institutes of Health; the National Human Genome Research Institute; the Broad Institute, and the National Science Foundation. The research from the Zhang group was supported by the NIH Director’s Pioneer Award; the NIH; the Keck, McKnight, Merkin, Vallee, Damon Runyon, Searle Scholars, Klingenstein, and Simon Foundations; Bob Metcalfe; the Klarman Family Foundation; the Simons Center for the Social Brain at MIT; and Jane Pauley.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Tuesday, September 01, 2015
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Thursday, August 27, 2015
Protein Found to Play a Key Role in Blocking Pathogen Survival
Calprotectin fends off microbial invaders by limiting access to iron, an important nutrient.
Wednesday, August 26, 2015
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Friday, August 21, 2015
Capturing Cell Growth in 3-D
Spinout’s microfluidics device better models how cancer and other cells interact in the body.
Monday, August 17, 2015
Better Estimates of Worldwide Mercury Pollution
New findings show Asia produces twice as much mercury emissions as previously thought.
Thursday, August 13, 2015
Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Develop Genetic Tools to Engineer Common Gut Bacterium
Researchers from the Massachusetts Institute of Technology have developed genetic parts that can be combined to program the commensal gut bacterium Bacteroides thetaiotaomicron.
Friday, July 10, 2015
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Friday, July 03, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Tough biogel structures produced by 3-D printing
Researchers have developed a new way of making tough — but soft and wet — bio-compatible materials, called “hydrogels,” into complex and intricately patterned shapes.
Wednesday, June 03, 2015
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!