Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Charting the RNA Epigenome

Published: Monday, December 16, 2013
Last Updated: Monday, December 16, 2013
Bookmark and Share
In science, sometimes you need to dive deep to see the big picture.

Scientists at the Broad Institute have demonstrated this time and again, enabling biological discoveries by generating dense maps, such as the survey of thousands of epigenetic marks on DNA across the human genome conducted as part of the ENCODE project.

A team led by Broad researchers has recently created the first high-resolution map of another epigenetic landscape – the RNA epigenome, also known as the “epitranscriptome.” The work appears in the December 5 issue of Cell.

It’s been known since the 1970s that RNA, like DNA, can be tagged with methyl groups, in one kind of epigenetic modification. When DNA or chromatin is methylated, it can alter gene activity by making genes more or less open to being transcribed. The function of RNA methylation, however, has remained a mystery since the discovery of this phenomenon decades ago. A detailed map of epigenetic marks on mRNA across the transcriptome would allow scientists to start navigating the epitranscriptome and begin uncovering its functional role.

One reason RNA methylation is so elusive is that RNA can be tricky to work with. “When working with RNA, we often try to turn it into DNA as soon as possible, because DNA is stable and RNA is not,” said Schraga Schwartz, first author on the new study and a postdoctoral researcher in the laboratories of Broad core faculty members Eric Lander and Aviv Regev, a senior author. “But when studying epigenetic modifications of RNA, once you’ve turned it into DNA, it’s too late. The modifications are no longer going to be there. Whatever you do has to be done at the RNA level.”

Decades ago, scientists pioneered methods of using antibodies to capture modified fragments of the genetic material, but once the fragments were isolated, they had difficulty identifying them. Only with the latest advances in RNA sequencing – and more recently, methods to sequence very small amounts of RNA – could scientists begin to make real headway in the study of the epitranscriptome.

“Until recently, we just knew there was a lot of RNA methylation going on,” said Schwartz. “But nobody knew where.” He explained that better methods to map the modification of messenger RNA across the transcriptome are a first step to uncovering the modifications’ functional roles. “Where is this happening? That’s pretty much an elementary question before starting to address function.”

Before joining the Broad two years ago, Schwartz was part of a research team in Israel that developed a method to study RNA methylation by incorporating RNA sequencing.

At the Broad, Schwartz together with research associate Maxwell Mumbach further optimized the technique in several ways: by reducing the RNA fragment size used in sequencing, which increased the resolution of their map, and reducing the necessary amount of starting material. The team then joined forces with Sudeep Agarwala and Gerald Fink of the Whitehead Institute to map methylations in yeast cells, which experience peaks of RNA modification during meiosis, giving the scientists a dynamic system to study. “In yeast cells, we can really follow methylation as it comes and goes,” said Schwartz. Using yeast cells, the team was also able to shut down the enzyme that adds methyl groups to RNA, allowing them to eliminate many false positive sites.

These advances produced a high-resolution map of more than 1,300 sites of RNA methylation across the yeast transcriptome, down to the single nucleotide. The researchers also characterized the role of three proteins that make up the methylation machinery, shedding light on how these proteins are specifically regulated during meiosis. In addition, they identified a novel protein that binds specifically to methylated RNA. Future studies of these proteins should yield clues about the role of RNA methylations in the cell.

The precise regulation of methylation levels during meiosis suggests an important, still unknown, functional role for RNA methylation. Schwartz, Regev, and their fellow scientists are now pursuing studies to uncover the function of these epitranscriptomic changes, by perturbing those sites in both yeast and mammalian cells. “Our hope is that yeast can serve as a model organism for uncovering function and that a lot of this information will be applicable to humans, given the large extent of conservation that we find,” said Schwartz.

Results of this work may yield insights into disease mechanisms. For example, the top gene associated with obesity, FTO, is an enzyme involved in RNA methylation and, for this reason, obesity researchers are very interested in understanding more about the epitranscriptome.

With this new high-resolution map in hand, scientists can begin exploring the landscape of the RNA epitranscriptome. The work illustrates the importance of mapping in biological study. “You cannot navigate without a map,” explained Schwartz. “One of the most informative things one could do to discover the function of RNA methylation is to perturb specific sites, but that’s only possible once you know where the sites are.”

The field of epitranscriptomics is still relatively new, since techniques that make it feasible only arose in the last couple of years, explains Schwartz. “It’s fascinating for me to follow a field from its infancy and see how knowledge gradually accumulates over time through the joint work of an entire community.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Develop Genetic Tools to Engineer Common Gut Bacterium
Researchers from the Massachusetts Institute of Technology have developed genetic parts that can be combined to program the commensal gut bacterium Bacteroides thetaiotaomicron.
Friday, July 10, 2015
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Friday, July 03, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Tough biogel structures produced by 3-D printing
Researchers have developed a new way of making tough — but soft and wet — bio-compatible materials, called “hydrogels,” into complex and intricately patterned shapes.
Wednesday, June 03, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Freshly Squeezed Vaccines
Microfluidic cell-squeezing device opens new possibilities for cell-based vaccines.
Saturday, May 23, 2015
Designing Better Medical Implants
A team of MIT researchers have discovered a novel method for reducing the typical immune system rejection response when implanting biomedical devices into the body.
Wednesday, May 20, 2015
Researchers Identify New Target For Anti-Malaria Drugs
Manipulating the permeability of a type of vacuole could help defeat malarial parasites.
Thursday, May 14, 2015
Faster, Smaller, More Informative
Device can measure the distribution of tiny particles as they flow through a microfluidic channel.
Thursday, May 14, 2015
How To Identify Drugs That Work Best For Each Patient
Implantable device could allow doctors to test cancer drugs in patients before prescribing chemotherapy.
Monday, April 27, 2015
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
10X Genomics Releases Linked-Read Data from NIST Genome Samples
Genome in a Bottle Consortium data submission for webinar presentation and public availability.
Study Sheds Light on the Causes of Cerebral Palsy
Wider use of genetic testing in children with CP should be considered.
Pitt Researchers to Monitor Resistance to HIV Drugs in Africa
Infectious diseases researchers from the University of Pittsburgh School of Medicine are leading a five-year, $5 million initiative to monitor drug resistance during the rollout of HIV prevention drugs in sub-Saharan Africa.
Environmental Epigenetics Affects Disease, Evolution
Researchers say environmental factors are having an underappreciated effect on the course of disease and evolution by prompting genetic mutations through epigenetics, a process by which genes are turned on and off independent of an organism’s DNA sequence.
Critical New Insights on DNA Repair
The enzyme fumarase is key to reversing genetic damage leading to cancer and therapy resistance.
Potential Treatment for Muscular Dystrophy
A new method for producing muscle cells could offer a better model for studying muscle diseases, such as muscular dystrophy, and for testing potential treatment options.
Nanoparticles Used to Breach Mucus Barrier in Lungs
Proof-of-concept study conducted in mice is a key step toward better treatments for lung diseases.
New Biosensors for Managing Microbial ‘Workers’
Researchers at Harvard’s Wyss Institute have unveiled new biosensors that enable scientists to more effectively control and 'communicate with' engineered bacteria.
Researchers Identify Protein in Mice that Helps Prepare for Healthy Egg-sperm Union
Protein RGS2 plays a critical role in preserving the fertilizability of the ovulated egg.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!