Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Recycled Plastic Proves Effective in Killing Drug-Resistant Fungi

Published: Thursday, December 19, 2013
Last Updated: Thursday, December 19, 2013
Bookmark and Share
IBN and IBM discover new medical application for converted PET bottles.

Researchers at Singapore's Institute of Bioengineering and Nanotechnology (IBN) and California's IBM Research - Almaden (IBM) have discovered a new, potentially life-saving application for polyethylene terephthalate (PET), which is widely used to make plastic bottles. They have successfully converted PET into a non-toxic biocompatible material with superior fungal killing properties.

As reported in Nature Communications, their new material proved particularly effective in destroying drug-resistant fungi and fungal biofilm, displaying great potential as an antifungal agent to prevent and treat topical fungus-induced diseases such as skin infections and keratitis.

IBN Executive Director Professor Jackie Y. Ying shared that, "A key focus of IBN's nanomedicine research efforts is the development of novel polymers and materials for more effective treatment and prevention of various diseases. Our latest breakthrough with IBM allows us to specifically target and eradicate drug-resistant and drug-sensitive fungi strains and fungal biofilms, without harming surrounding healthy cells. We hope to eventually apply this technology clinically to help the large number of patients worldwide who suffer from fungal infections."

In recent years, the number of opportunistic fungal infections has increased due to growing populations of patients with weakened immune systems, for example due to cancer, organ transplant or HIV/AIDS.

In such patients, invasive infections caused by Candida, Aspergillus and Cryptococcus neoformans (C. neoformans) fungi strains may take the form of potentially lethal blood stream infections, lung infections and meningitis. Candida, for example, causes candidiasis, which is the fourth most common fungal blood stream infection among hospitalized patients in the United States according to the Centers for Disease Control & Prevention.

BCC Research reported that the treatment cost for fungal infections was USD 3 billion worldwide in 2010 and this is expected to increase to USD 6 billion in 2014. Of great concern to the clinical and healthcare communities is the rise in fungal infections, which are resistant to conventional antifungal drugs, as well as increasing reports of resistance development in patients toward antifungal agents.

These trends necessitate the urgent development of suitable alternatives to the limited selection of available antifungal agents. Further, most conventional antifungal agents do not completely destroy the fungi but merely inhibit their growth, which may lead to future infections.

A particular challenge facing researchers lies in fungi's metabolic similarity to mammalian cells. Existing antifungal agents are unable to distinguish between infected and healthy cells, and frequently end up attacking the latter. Hence, patients commonly report hemolysis and nephrotoxicity as treatment side effects.

Leveraging IBM's polymer synthesis and computational expertise, as well as IBN's nanomedicine and biomaterials research expertise, the researchers transformed PET, a common plastic material, into novel small molecule compounds that self-assemble in water into nanofibers. Via electrostatic interaction, the nanofibers are able to selectively target fungal cells and penetrate their membrane, killing them in the process.

According to Dr Yi Yan Yang, Group Leader, IBN, "The ability of our molecules to self-assemble into nanofibers is important because unlike discrete molecules, fibers increase the local concentration of cationic charges and compound mass. This facilitates the targeting of the fungal membrane and its subsequent lysis, enabling the fungi to be destroyed at low concentrations. The result is a highly efficient killing strategy that causes minimal damage or toxicity to surrounding healthy cells."

In vitro studies conducted at IBN demonstrated that the nanofibers eradicated over 99.9% of C. albicans after just one hour of incubation and did not develop any drug resistance, even after 11 treatments. C. albicans causes the third most common fungal blood stream infection in the United States.

The nanofibers were also used to effectively treat contact lens-associated fungal biofilm eye infection in mice without causing any toxicity to the eye.

In comparison, the conventional antifungal drug, Fluconazole, was only able to inhibit additional fungal growth, and the infection exhibited drug resistance after six treatments. Further, Fluconazole was not effective against biofilms.

According to Dr James Hedrick, Advanced Organic Materials Scientist, IBM Research - Almaden, "As computational predictive methodologies continue to advance, we can begin to establish ground rules for self-assembly to design complex therapeutics to fight infections, as well as the effective encapsulation, transport and delivery of a wide variety of cargos to their targeted disease sites."

The IBN and IBM scientists have made other recent breakthroughs in antimicrobial research. By combining their antimicrobial polymers with conventional antibiotics or antifungal drugs, they were able to induce the formation of pores in microbial membranes, which promotes the penetration of antibiotics into the microbial cells, and kills highly infectious, drug-resistant P. aeruginosa at significantly lower concentrations when compared to the antimicrobial polymers and antibiotics alone. In addition, the researchers have also fine-tuned their biodegradable antimicrobial polycarbonates to produce polymers with strong and broad-spectrum antimicrobial activity and negligible toxicity to mammals.

IBN and IBM's research collaboration has resulted in more than 20 platform technologies on drug, protein and gene delivery, as well as macromolecular antimicrobial agents to treat MRSA infections, other infectious diseases and cancers.

The research team is now actively seeking pharmaceutical companies to further develop their newest breakthrough for future clinical applications.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Thursday, September 22, 2016
Advancing the Understanding and Research of Botulinum Neurotoxin Biology
Ipsen and the Institute of Molecular and Cell Biology (IMCB) announce the signature of a research partnership to study the intracellular trafficking of botulinum neurotoxins (BoNTs) within neurons.
Monday, May 16, 2016
A*STAR Findings on Breast Cancer Hold Potential for New Treatments
Computational techniques to increase understanding of diseases and improve patient treatments.
Friday, October 30, 2015
Rapid Test Kit Detects Dengue Antibodies from Saliva
IBN’s MedTech innovation simplifies diagnosis of infectious diseases.
Friday, January 30, 2015
A*STAR Scientists Discover Gene Critical for Proper Brain Development
This gene accounts for the size of the human brain and potentially our superior cognitive abilities.
Friday, December 26, 2014
A Gold Catalyst for Clear Water
Mixed nanoparticle systems may help purify water and generate hydrogen.
Wednesday, December 24, 2014
Anti-Diabetic Drug Springs New Hope for Tuberculosis Patients
Drug for treating diabetes can double up as adjunct treatment for tuberculosis.
Wednesday, December 17, 2014
Gene Associated with an Aggressive Breast Cancer Identified
Over-expressed gene in triple negative breast cancer offers new diagnostics for risk assessment.
Wednesday, December 03, 2014
Diagnostics Development Hub To Complement Biomed Research Launched
Hub will leverage strategic public-public and public-private partnerships to accelerate market readiness of locally developed diagnostic products.
Friday, November 28, 2014
Protecting the Body from Itself
Scientists advance understanding of autoimmunity with discovery of link between major immune cell types.
Friday, September 26, 2014
Colorful Nanoprobes Make A Simple Test
Gold nanoparticles linked to single-stranded DNA create a simple but versatile genetic testing kit.
Thursday, September 25, 2014
Lab on a Breathing Chip
Human nasal epithelial cells, cultured on a microchip, react to air pollutants just like they would in the upper airway.
Saturday, September 13, 2014
Understanding and Improving the Body's Fight Against Pathogens
A*STAR scientists find new targets for modulating antibody response.
Tuesday, September 02, 2014
Novel Gene Predicts Both Breast Cancer Relapse and Response to Chemotherapy
A predictive marker discovered by scientists at A*STAR and NUS could help doctors classify breast cancer patients for more effective treatment.
Thursday, August 21, 2014
High Capacity Antibody Purification
Researchers from the A*Star Bioprocessing Technology Institute have used magnetic nanoparticles to break the capacity barrier for antibody purification.
Sunday, August 17, 2014
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
“Sixth Sense” May Be More Than Just A Feeling
The NIH Study shows that two young patients with a mutation in the PIEZ02 have problems with touch and proprioception, or body awareness.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Biomolecular Manufacturing ‘On-the-Go’
Wyss Institute team unveils a low-cost, portable method to manufacture biomolecules for a wide range of vaccines, other therapies as well as diagnostics.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Stem Cell ‘Heart Patch’ Almost Perfected
Scientists aiming to perfect and test 3D "heart patches" in animal model, last hurdle before human patients.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!