Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

New Method for Determining Protein Structure has Major Implications for Drug Development

Published: Friday, December 20, 2013
Last Updated: Friday, December 20, 2013
Bookmark and Share
Ground-breaking discovery will improve the efficiency of protein structure determination, aiding targeted drug research.

Research involving scientists from Trinity College Dublin has led to a major breakthrough that could streamline the process used to determine the structure of proteins in cell membranes. This will have major implications for drug-related research because almost 50% of drugs on the market target these proteins.

Proteins in cell membranes are vital for the everyday functioning of complex cellular processes. They act as transporters to ensure that specific molecules enter and leave our cells, as signal interpreters important in decoding messages and initiating responses, and as agents that speed up appropriate responses. But to understand how they work, and how drugs can be made to target them, it is vital to determine their precise atomic 3-D structure. A major challenge is the production of large membrane protein crystals used in this pursuit.

A research group led by Professor of Membrane Structural and Functional Biology at Trinity, Martin Caffrey, developed a high-throughput method for growing membrane protein crystals that makes use of the ‘Lipid Cubic Phase’ (LCP). The LCP uses a fat-based media to grow these crystals in.

The crystals are then transferred to specialised circular arenas in which they interact with X-rays emitted by charged particles that race around at close to the speed of light. Scientists later examine the precise pattern left by scattered X-ray particles after they have collided with the crystals to determine their precise structure. Professor Brian Kobilka was awarded his share in the 2012 Nobel Prize in Chemistry, in part for work that made use of the LCP.

Recently, a new method for determining membrane protein structures that uses an X-ray-free laser showed great promise. However, it required huge numbers of protein crystals to generate a clear picture of their structure as only 1 in 10,000 was hit in a way that produced useable data. In the breakthrough, Professor Caffrey, as part of a large team of scientists, used the fat-based LCP media in which the protein crystals were grown to jet them across the laser at a relatively slow pace. This slower pace translated into a vastly improved ‘hit rate’, which in turn provided a more efficient profiling of the protein structure.

The scientists used a major drug target as their membrane protein of interest in this study. Abbreviated as ‘5-HT2B’, this protein is a cell receptor for serotonin, which is often linked to happiness and the feeling of well-being.  The scientists were able to determine the receptor structure to good resolution, as well as showcasing the vastly improved hit rate and ability to grow crystals in the medium in which they are delivered to the laser, which confers further method-related benefits.

Professor of Membrane Structural and Functional Biology at Trinity, Martin Caffrey, said: “This work represents a major breakthrough and a landmark in the membrane structural and functional biology field. Because the data were collected under conditions that were free from radiation damage, and because the research was conducted at a temperature of 20 °C, which is physiologically useful, the solved structure provides a more reliable representation of how the receptor appears within the body.”

The work in this study took place at the Linac Coherent Light Source (LCLS) at Stanford University. The letter in Science acknowledges 33 contributors, who represent nine institutions. The work at LCLS, which lasted for 84 hours, cost almost $2 million. It was supported in part by a grant from Science Foundation Ireland.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos