Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Redirecting the Rules of Attraction in Fruit Flies

Published: Friday, December 20, 2013
Last Updated: Friday, December 20, 2013
Bookmark and Share
MRC researchers have discovered a biological switch that determines which part of the fruit fly’s brain responds to pheromones, depending on whether the fruit fly is male or female.

Many previous studies have identified differences in brain structure between the sexes. However this study, published in Cell, is the first description in any animal of a specific change in nerve cell wiring that reroutes information between male and female brains.

Sex pheromones are chemicals that allow male and female animals to communicate by smell, typically provoking different responses in the two sexes. For example in fruit flies, a male sex pheromone called cVA can stimulate females to mate with a male, while repelling other males at the same time. What changes in the brain result in male and female flies interpreting the same pheromone signal in very different ways?

The team first identified and labelled two groups of nerve cells inside the fly brain that respond to pheromones using a green fluorescent protein. One group of nerve cells responded to pheromone only in male brains, while the second group responded only in females. This difference in response depended on a changeover switch that rerouted incoming pheromone information to different target cells.

In further experiments the team were able to make a small number of nerve cells male in an otherwise female brain. Manipulating the sex of the nerve cells, helped to pin point the location and the gene responsible for the ‘switch’, reversing the fly’s response to pheromones. The so-called ‘fruitless’ gene controlling this switch had previously been shown to control fruit flies’ sexual behaviour but exactly how it could achieve this through changes in brain wiring was unknown.

Dr Greg Jefferis who led the study at the MRC Laboratory of Molecular Biology said: “Arguably the biggest challenge in biology today is to understand how the pattern of connections between individual nerve cells allows the brain to process and store information and respond to the outside world. Given the huge complexity of human or even mouse brains, there is great interest in trying to understand basic principles in simpler model systems such as the fruit fly. 

Looking at the differences between the male and female brains of a species allows us to focus our efforts on wiring differences that can change behaviour. Until now it has proven very difficult to identify specific and reproducible differences in brain wiring and understand how they could alter the flow of information between male and female brains. This is what we have now shown in flies. We suspect that the same principle will apply across many species, including mammals.”

Dr Hugh Pelham, director of the MRC Laboratory of Molecular Biology. “The MRC Laboratory of Molecular Biology has a well-founded reputation for contributing to some of the world’s most important biological questions by detailed investigation starting at the molecular level. Investing in science that opens up research avenues from simple brains to more complex ones is paving the way for a far greater understanding of our own brains in health and disease.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Fundamental Protection Mechanism Against Formalin In Mammals is Revealed
Formaldehyde, or formalin, is well known to all of us as a common chemical used in many industrial processes and also as a preservative, remarkably we also produce formaldehyde in our bodies.
Wednesday, September 30, 2015
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Wednesday, July 22, 2015
MRC, GSK and Five Leading UK Universities Collaborate
Collaboration to crack difficult disease areas.
Thursday, July 16, 2015
‘Mini Bile Ducts’ used to Discover New Drugs that could Prevent Liver Damage
An experimental cystic fibrosis drug has been shown to prevent the disease’s damage to the liver, thanks to a world-first where scientists grew mini bile ducts in the lab.
Tuesday, July 14, 2015
First RNAi Meiosis Screen Reveals Genes Essential to Generate Eggs
Screening techniques developed leading to the discovery of genes essential for meiosis in mammals.
Wednesday, July 08, 2015
Study Identifies New Way to Kill the Malaria Parasite
Scientists have discovered new ways in which the malaria parasite survives in the blood stream of its victims, a discovery that could pave the way to new treatments for the disease.
Tuesday, July 07, 2015
Making Vaccines More Effective In The Elderly
Compound shown to restore the immune system’s inbuilt memory.
Tuesday, November 11, 2014
Immune Organ Regenerated in Mice
Scientists have for the first time used regenerative medicine to fully restore a degenerated organ in a living animal.
Tuesday, April 08, 2014
AstraZeneca, MRC Collaboration to Create New Centre for Early Drug Discovery
The Companies today announced the groundbreaking collaboration aimed at better understanding the mechanisms of human disease. The collaboration will see the creation of a joint research facility at AstraZeneca’s new R&D centre in Cambridge in the UK.
Monday, March 31, 2014
MRC Invests £32M to Improve Data Research
Investment will improve capability, capacity and capital infrastructure in medical bioinformatics.
Friday, February 07, 2014
A Gene Mutation for Excessive Alcohol Drinking Found
UK researchers have discovered a gene that regulates alcohol consumption and when faulty can cause excessive drinking.
Wednesday, November 27, 2013
MRC Laboratory of Molecular Biology Alumni Awarded Nobel Prize for Chemistry
Professor Michael Levitt, Professor Arieh Warshel and Professor Martin Karplus awarded the 2013 Nobel Prize in Chemistry.
Monday, October 14, 2013
Study Leads to Alzheimer's Breakthrough
Researchers at the Medical Research Council Toxicology Unit have used an orally-administered compound to block a major pathway leading to brain cell death in mice, preventing neurodegeneration.
Thursday, October 10, 2013
£25m to Kick-Start ‘Industrial Revolution’ in Regenerative Medicine
Applications will include Parkinson’s disease, cardiovascular disease, wound and musculoskeletal repair, eye disorders and deafness.
Wednesday, September 11, 2013
3D Tissue Grown from Stem Cells - New Model System for Brain Development
An international team of researchers has used stem cells to create a 3D structure that mimics early human brain development.
Monday, September 02, 2013
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Metabolomic Platform Reveals Fundamental Flaw in Common Lab Technology
A new study led by scientists at The Scripps Research Institute (TSRI) shows that a technology used in thousands of laboratories, called gas chromatography mass spectrometry (GC-MS), fundamentally alters the samples it analyzes.
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos