Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Redirecting the Rules of Attraction in Fruit Flies

Published: Friday, December 20, 2013
Last Updated: Friday, December 20, 2013
Bookmark and Share
MRC researchers have discovered a biological switch that determines which part of the fruit fly’s brain responds to pheromones, depending on whether the fruit fly is male or female.

Many previous studies have identified differences in brain structure between the sexes. However this study, published in Cell, is the first description in any animal of a specific change in nerve cell wiring that reroutes information between male and female brains.

Sex pheromones are chemicals that allow male and female animals to communicate by smell, typically provoking different responses in the two sexes. For example in fruit flies, a male sex pheromone called cVA can stimulate females to mate with a male, while repelling other males at the same time. What changes in the brain result in male and female flies interpreting the same pheromone signal in very different ways?

The team first identified and labelled two groups of nerve cells inside the fly brain that respond to pheromones using a green fluorescent protein. One group of nerve cells responded to pheromone only in male brains, while the second group responded only in females. This difference in response depended on a changeover switch that rerouted incoming pheromone information to different target cells.

In further experiments the team were able to make a small number of nerve cells male in an otherwise female brain. Manipulating the sex of the nerve cells, helped to pin point the location and the gene responsible for the ‘switch’, reversing the fly’s response to pheromones. The so-called ‘fruitless’ gene controlling this switch had previously been shown to control fruit flies’ sexual behaviour but exactly how it could achieve this through changes in brain wiring was unknown.

Dr Greg Jefferis who led the study at the MRC Laboratory of Molecular Biology said: “Arguably the biggest challenge in biology today is to understand how the pattern of connections between individual nerve cells allows the brain to process and store information and respond to the outside world. Given the huge complexity of human or even mouse brains, there is great interest in trying to understand basic principles in simpler model systems such as the fruit fly. 

Looking at the differences between the male and female brains of a species allows us to focus our efforts on wiring differences that can change behaviour. Until now it has proven very difficult to identify specific and reproducible differences in brain wiring and understand how they could alter the flow of information between male and female brains. This is what we have now shown in flies. We suspect that the same principle will apply across many species, including mammals.”

Dr Hugh Pelham, director of the MRC Laboratory of Molecular Biology. “The MRC Laboratory of Molecular Biology has a well-founded reputation for contributing to some of the world’s most important biological questions by detailed investigation starting at the molecular level. Investing in science that opens up research avenues from simple brains to more complex ones is paving the way for a far greater understanding of our own brains in health and disease.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genes Essential to Life Discovered
Genes critical for life are discovered in humans and mice as part of large-scale phenotyping study.
Thursday, September 15, 2016
Gene Linked to Hearing Loss Identified
Researchers have identifed a gene associated with age-related hearing loss.
Monday, August 22, 2016
World's Most In-Depth Study to Detect Alzheimer's Disease
A multisite team will see the most thorough and vigorous testing for Alzheimer's ever performed on volunteers.
Monday, August 22, 2016
Discovery of Key Component of HIV Yields New Drug Target
Scientists from the MRC Laboratory of Molecular Biology in Cambridge and University College London have discovered an essential feature of HIV that the virus uses to infect cells whilst avoiding detection by the immune system. This discovery presents a new drug target and the opportunity to re-evaluate existing treatments for HIV to improve their efficacy.
Thursday, August 11, 2016
MRC Technology, Alzheimer’s Association Collaborate
MRC Technology (MRCT), an independent medical research charity based in London, and the Alzheimer’s Association in Chicago have entered into an agreement to review and monitor the Association’s grant-funded research portfolio.
Thursday, January 21, 2016
Study Shows Blocking Brain Inflammation Could Help Alzheimer's
The research was jointly funded by the Medical Research Council (MRC) and Alzheimer’s Research UK.
Saturday, January 09, 2016
A Fundamental Protection Mechanism Against Formalin In Mammals is Revealed
Formaldehyde, or formalin, is well known to all of us as a common chemical used in many industrial processes and also as a preservative, remarkably we also produce formaldehyde in our bodies.
Wednesday, September 30, 2015
Liver Regrown from Stem Cells
Scientists have repaired a damaged liver in a mouse by transplanting stem cells grown in the laboratory.
Wednesday, July 22, 2015
MRC, GSK and Five Leading UK Universities Collaborate
Collaboration to crack difficult disease areas.
Thursday, July 16, 2015
‘Mini Bile Ducts’ used to Discover New Drugs that could Prevent Liver Damage
An experimental cystic fibrosis drug has been shown to prevent the disease’s damage to the liver, thanks to a world-first where scientists grew mini bile ducts in the lab.
Tuesday, July 14, 2015
First RNAi Meiosis Screen Reveals Genes Essential to Generate Eggs
Screening techniques developed leading to the discovery of genes essential for meiosis in mammals.
Wednesday, July 08, 2015
Study Identifies New Way to Kill the Malaria Parasite
Scientists have discovered new ways in which the malaria parasite survives in the blood stream of its victims, a discovery that could pave the way to new treatments for the disease.
Tuesday, July 07, 2015
Making Vaccines More Effective In The Elderly
Compound shown to restore the immune system’s inbuilt memory.
Tuesday, November 11, 2014
Immune Organ Regenerated in Mice
Scientists have for the first time used regenerative medicine to fully restore a degenerated organ in a living animal.
Tuesday, April 08, 2014
AstraZeneca, MRC Collaboration to Create New Centre for Early Drug Discovery
The Companies today announced the groundbreaking collaboration aimed at better understanding the mechanisms of human disease. The collaboration will see the creation of a joint research facility at AstraZeneca’s new R&D centre in Cambridge in the UK.
Monday, March 31, 2014
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
Adipose Tissue Secretes Factors That Activate Metabolism
Study finds brown adipose tissue secretes signalling factors that activates metabolism of fat and carbohydrates.
Antibiotic Resistant Bacteria In America's Water System
Antibiotic resistant bacteria live inside drinking water distribution systems blamed for rising healthcare costs.
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
Ancient Eggshell Protein Breaks Through DNA Time Barrier
Fossil proteins from a 3.8million year-old eggshell have been identifed, suggests proteins could give insight into evolutionary tree.
Monkeys Protected by Zika DNA Vaccine
Experimental Zika virus DNA vaccines successfully protected monkeys against Zika infection.
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!