Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Major Advance in Human Proteins

Published: Monday, December 23, 2013
Last Updated: Monday, December 23, 2013
Bookmark and Share
The paper, “Serial femtosecond crystallography of G-protein-coupled receptors,” reports the successful imaging, at room temperature, of the structure of GPCR with the use of an x-ray free-electron laser.

A group of researchers from Arizona State University are part of a larger team reporting a major advance in the study of human proteins that could open up new avenues for more effective drugs of the future. The work is being reported in this week’s Science magazine.

GPCR’s are a highly diverse group of membrane proteins that mediate cellular communication. Because of their involvement in key physiological and sensory processes in humans, they are thought to be prominent drug targets.

The method described in the paper was applied for the first time to this important class of proteins, for which the 2012 Nobel Prize was awarded to Brian Kobilka and Robert Lefkowitz, said John Spence, an ASU professor of physics. Spence is also the director of science at National Science Foundation’s BioXFEL Science and Technology Center, and a team member on the Science paper.

“These GPCR’s are the targets of a majority of drug molecules,” Spence said, but they are notoriously difficult to work with. This is the first time structural observations of the GPCR’s have been made at room temperature, allowing researchers to overcome several disadvantages of previous imaging methods of the proteins.

“Normally, protein crystallography is performed on frozen samples, to reduce the effects of radiation damage,” Spence said, “but this new work was based on an entirely new approach to protein crystallography, called SFX (Serial Femtosecond Crystallography), developed jointly by ASU, the Deutsches Elektronen-Synchrotron (DESY) and the SLAC National Accelerator Laboratory.

“This method uses brief pulses of x-rays instead of freezing the sample to avoid damage, and so it reveals the structure which actually occurs in a cell at room temperature, not the frozen structure,” Spence added. “The 50 femtosecond pulses (120 per second) ‘outrun’ radiation damage, giving a clear picture of the structure before it is vaporized by the beam.”

The femtosecond crystallography technique could enable researchers to view molecular dynamics at a time-scale never observed before. Spence said the method basically operates by collecting the scattering for the image so quickly that images are obtained before the sample is destroyed by the x-ray beam.

By "outrunning" radiation-damage processes in this way, the researchers can record the time-evolution of molecular processes at room temperature, he said.

Spence said ASU played a crucial role in the project described in Science, through the invention by Uwe Weierstall (an ASU physics professor) of an entirely new device for sample delivery suited to this class of proteins.

The lipic cubic phase (LCP) injector that Weierstall developed replaces the continuous stream of liquid (which sends a continuously refreshed stream of proteins across the pulsed x-ray beam) with a slowly moving viscous stream of ‘lipid cubic phase solution,’ which has the consistency of automobile grease.

“We call it our ‘toothpaste jet,’” Spence said.

He added that the LCP solves three problems associated with previous SFX work, which made this new work possible:

• The viscosity slows the flow rate so the crystals emerge at about the same rate as the x-ray pulses come along, hence no protein is wasted. This is important for the study of human protein, which is more costly than diamond on a per gram basis.

• The “hit rate” is very high. Nearly all x-ray pulses hit protein particles.

• Most important, LCP is itself a growth medium for protein nanocrystals.

“A big problem with the SFX work we have been doing over the past four years is that people did not know how to make the required nanocrystals,” Spence said. “Now it seems many can be grown in the LCP delivery medium itself.”

The international team reporting the advance in Science includes researchers from the Scripps Research Institute, La Jolla, Calif.; the Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; the Department of Physics and the Department of Chemistry and Biochemistry at ASU, Tempe, Ariz.; SLAC National Accelerator Laboratory, Menlo Park, Calif.; Trinity College, Dublin, Ireland; Uppsala University, Sweden; University of Hamburg, Germany; and Center for Ultrafast Imaging, Hamburg, Germany.

The collaboration between the team at ASU and the research groups at the Scripps Research Institute led by Professor Vadim Cherzov was initiated by Petra Fromme at ASU as a collaboration between two of the membrane protein centers of the Protein Structure Initiative of the National Institute of Health (PSI:Biology) -- the Center for Membrane Proteins in Infectious Diseases (MPID) at ASU and Trinity College Dublin led by  Petra Fromme, and the GPCR Network at Scripps led by Prof. Ray Stevens.

Fromme led the ASU group that helped plan the experiments, characterize the samples and assist with data collection. Other members of the ASU team include Daniel James, Dingjie Wang, Garrett Nelson, Uwe Weierstall, Nadia Zatsepin, Richard Kirian, Raimund Fromme, Shibom Basu, Christopher Kupitz, Kimberley Rendek, Ingo Grotjohann and John Spence.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Thursday, February 11, 2016
Scientists Blueprint Tiny Cellular ‘Nanomachine’
Scientists have drawn up molecular blueprints of a tiny cellular ‘nanomachine’, whose evolution is an extraordinary feat of nature, by using one of the brightest X-ray sources on Earth.
Monday, December 21, 2015
Worldwide Resource for Exploring Genes' Hidden Messages
After a decade-long $3 billion international effort, scientists heralded the 2001 completion of the human genome as a moon landing achievement for biology and the key to finally solving intractable diseases like cancer.
Tuesday, December 15, 2015
Nanoparticles in Foods Raise Safety Questions
Nanoparticles can make foods like jawbreaker candies brighter and creamier and keep them fresh longer. But researchers are still in the dark about what the tiny additives do once inside our bodies.
Friday, October 23, 2015
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
Wednesday, August 26, 2015
Rare Form: Novel Structures Built from DNA Emerge
DNA, the molecular foundation of life, has new tricks up its sleeve. The four bases from which it is composed can be artificially manipulated to construct endlessly varied forms in two and three dimensions.
Tuesday, July 21, 2015
Faster, Portable Microbial analysis
New miniaturized microbial analysis machine permits the detection of microbes in water, soil and the upper atmosphere.
Wednesday, May 27, 2015
Bold Steps Toward Engineering New Lungs
ASU researchers are working to improve aspects of lung engineering that may in the future contribute to providing a nearly limitless supply of donor organs, ideally matched to their recipients, or to repairing damaged lungs.
Wednesday, May 27, 2015
ASU Nano Facility Receives $1m Grant From National Science Foundation
NSF grant awarded to operate two secondary ion mass spectrometry laboratories as a national facility for earth sciences research.
Thursday, February 12, 2015
Fast, Low-cost DNA Sequencing Technology One Step Closer To Reality
ASU Regents' Professor Stuart Lindsay led a team of scientists from Arizona State University's Biodesign Institute and IBM's T.J. Watson Research Center in the development of a prototype DNA reader that could make whole genome profiling an everyday practice in medicine.
Wednesday, November 26, 2014
Tiny Tweezers Allow Precision Control of Enzymes
Researchers at Arizona State University’s Biodesign Institute describe a pair of tweezers shrunk down to an astonishingly tiny scale.
Thursday, July 04, 2013
Vaccine Technology Takes Dramatic Step Forward
New and increasingly sophisticated vaccines are taking aim at a broad range of disease-causing pathogens, targeting them with greater effectiveness at lower cost and with improved measures to ensure safety.
Wednesday, November 07, 2012
Carbon Nanotubes Show Promise for High-Speed Genetic Sequencing
Faster sequencing of DNA holds potential for personalized diagnosis and customized treatment based on each individual's genomic makeup.
Monday, January 04, 2010
Dissected Brains of Fruit Flies Provide Clues in Autism Research
A new bioassay methodology identifies drugs that may increase the cognitive functionality of children with mental retardation or autism.
Thursday, January 29, 2009
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Implementation Science Approaches to Reduce Mother-to-Child HIV Transmission
The NIH study will investigate best practices to ease major disease burden in Sub-Saharan Africa.
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
Link Between Canned Food, BPA Exposure Revealed
New Stanford research resolves the debate on the link between canned food and exposure to the hormone-disrupting chemical known as Bisphenol A, or BPA.
Portable Test Rapidly Detects Zika
To better diagnose and track the disease, scientists are now reporting a new $2 test that in the lab can accurately detect low levels of the virus in saliva.
Erasing Unpleasant Memories with a Genetic Switch
Researchers from KU Leuven and the Leibniz Institute for Neurobiology have managed to erase unpleasant memories in mice using a 'genetic switch'.
Unidentified Spectra Detector
New algorithm clusters over 250 million spectra for analysis, such that millions of unidentified peptide sequences can be recognised.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!