" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Proteomics Tool Points to New Malaria Drug Target

Published: Monday, December 23, 2013
Last Updated: Monday, December 23, 2013
Bookmark and Share
BBSRC-funded scientists have taken an important step towards new malaria treatments by identifying a way to stop malaria parasites from multiplying.

In a study published in Nature Chemistry, they show that blocking the activity of an enzyme called N-myristoyltransferase (NMT) in the most common malaria parasite prevents mice from showing symptoms and extends their lifespan. The team are working to design molecules that target NMT more potently, and hope to start clinical trials of potential treatments within four years.

A recent study estimated that 1.2 million people died from malaria in 2010. Although a variety of antimalarial drugs are available, some strains of the parasite are resistant to treatment. These strains are becoming more common, with treatment failures reported across multiple frontline drugs. If acute illness is cured, the parasite can remain dormant in the blood and return to cause illness later. Malaria vaccines have been researched intensively, but none have been introduced into clinical practice.

Using novel chemical tools, developed with funding from BBSRC, to study the post-translational modification of proteins in live parasite cells, the team showed that NMT is involved in a wide range of essential processes in the parasite cell. For example, in the production of proteins which enable malaria to be transmitted between humans and mosquitoes, and proteins that enable malaria to cause long-term infection.

This is the first compelling evidence that NMT is a druggable target against the most important human malaria parasite, Plasmodium falciparum.

Target practice

The researchers have tested a handful of molecules that block the activity of NMT in the parasite living inside human red blood cells, and in mice, but further refinement will be needed before a treatment is ready to be tested in humans.

Dr Ed Tate, a former BBSRC David Phillips Fellow, who led the project from Imperial's Department of Chemistry, said, "The drug situation for malaria is becoming very serious. Resistance is emerging fast and it's going to be a huge problem in the future.

"Finding an enzyme that can be targeted effectively in malaria can be a big challenge. Here, we've shown not only why NMT is essential for a wide range of important processes in the parasite, but also that we can design molecules that stop it from working during infection. It has so many functions that we think blocking it could be effective at preventing long-term disease and transmission, in addition to treating acute malaria. We expect it to work not just on Plasmodium falciparum, the most common malaria parasite, but the other species as well.

"We need to do some more work in the lab to find the best candidate molecule to take into clinical trials, but hopefully we'll be ready to do that within a few years."

The discovery is the culmination of a five-year project by a consortium of researchers from Imperial College London, the MRC National Institute for Medical Research, the University of Nottingham, the University of York, and Pfizer, funded by BBSRC, the Engineering and Physical Sciences Research Council, and the Medical Research Council.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genome-Editing Position Statement
A group of leading UK research organisations has today issued an initial joint statement in support of the continued use of CRISPR-Cas9 and other genome-editing techniques in preclinical research.
Monday, September 07, 2015
Expanding the DNA Alphabet: 'Extra' DNA Base Found to be Stable in Mammals
A rare DNA base, previously thought to be a temporary modification, has been shown to be stable in mammalian DNA, suggesting that it plays a key role in cellular function.
Thursday, June 25, 2015
Global Food Security (GFS) Develops New Funding Programme
New programme of research to tackle resilience of the food system.
Tuesday, June 02, 2015
£4M to Fund Important Food Crops from BBSRC and NERC
Research projects designed with industry partners to maximize impact.
Tuesday, June 02, 2015
Controlling Leaf Blotch Disease In Wheat
Scientists have found a genetic mechanism that could stop the spread of a "devastating" disease threatening wheat crops.
Thursday, February 05, 2015
Rising Temperatures Predicted to Lower Wheat Yields
An international consortium of researchers has used big data sets to predict the effects climate change on global wheat yields.
Friday, December 26, 2014
New Test For Detecting Horse Meat
New test compares differences in chemical compositions of the fat found in meats.
Tuesday, December 02, 2014
UK And India Collaborate On Future-Proof Crops
Drought-tolerant tomatoes, improved wheat and grass pea could provide crops for the future.
Friday, November 28, 2014
Drugs Used to Treat Lung Disease Work With the Body Clock
Scientists from The University of Manchester have discovered why medication to treat asthma and pneumonia can become ineffective.
Thursday, August 14, 2014
Researchers Use ‘Big Data’ Approach to Map the Relationships Between Human and Animal Diseases
EID2 database used to prevent and tackle disease outbreaks around the globe.
Thursday, July 17, 2014
TGAC at the Forefront of Next Generation Sequencing Capability
The Genome Analysis Centre adds two Illumina HiSeq 2500 machines to its platform suite.
Thursday, June 26, 2014
UK Diet and Health Research Awarded £4M
Funding awarded to six projects investigating diet and health to enable the food and drink industry to meet the needs of UK consumers.
Wednesday, June 25, 2014
Better Understanding of Disease Resistance Genes in Crops
Effector-triggered defence concept describes how plants protect themselves against the apoplast.
Friday, June 06, 2014
Investment Provides Access to the World’s Most Advanced Crystallography Technology
The UK community will benefit thanks to a £5.64M investment from UK research funders.
Tuesday, June 03, 2014
Public-private Research Partnership to Support Sustainable Agricultural Systems
The partnership will support projects that will help provide solutions to key challenges affecting the sustainability of the UK crop and livestock sectors.
Friday, May 23, 2014
Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Leukemia’s Surroundings Key to its Growth
Researchers at The University of Texas at Austin have discovered that a type of cancer found primarily in children can grow only when signaled to do so by other nearby cells that are noncancerous.
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
‘Smelling’ Prostate Cancer
A research team from the University of Liverpool and the University of the West of England (UWE Bristol) has reached an important milestone towards creating a urine diagnostic test for prostate cancer that could mean that invasive diagnostic procedures that men currently undergo eventually become a thing of the past.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
A Crystal Clear View of Biomolecules
Fundamental discovery triggers paradigm shift in crystallography.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
NIH Seeks Research Applications to Study Zika in Pregnancy, Developing Fetus
Institute has announced that the new effort seeks to understand virus effect on reproduction and child development.
Iron in the Blood Could Cause Cell Damage
Concentrations of iron similar to those delivered through standard treatments can trigger DNA damage within 10 minutes, when given to cells in the laboratory.
Neanderthal DNA Influences Human Disease Risk
Large-scale, evolutionary analysis compares genetic data alongside electronic health records.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!