Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Biomarkers Indicate Increased Risk of Death After Discharge from Cardiac Surgery

Published: Monday, December 23, 2013
Last Updated: Monday, December 23, 2013
Bookmark and Share
Following cardiac surgery, patients with elevated levels of kidney injury biomarkers are at a significantly higher risk of dying during the next three years, a Yale study has found.

An earlier Yale study identified specific blood and urine markers that can predict which patients will suffer acute kidney injury (AKI) after cardiac surgery. AKI is a frequent complication of cardiac surgery, and the Yale investigators demonstrated that biomarkers predicted who is at risk of progressively worsening kidney function immediately after surgery.

The new study examined mortality at an average of three years after cardiac surgery. The researchers found that patients with clinically apparent AKI who also had high levels of urinary biomarkers of kidney injury, particularly interleukin (IL)-18 and kidney injury molecule (KIM)-1, faced a 2- to 3.2-fold increased risk for mortality over three years, compared with patients with the lowest levels of these biomarkers. However, the most interesting finding, say the researchers, was that even patients who have no evidence of clinical AKI, but who do have high levels of these injury biomarkers in their urine were also at higher risk of death.

The researchers believe these findings can provide an important way to assess patients — both with and without clinical AKI — in the immediate postoperative period in order to identify those who are at increased risk of death.

“AKI has traditionally been defined by serum creatinine, which represents changes in kidney function. This is the first study that links structural injury of the kidney with meaningful long-term outcomes,” said senior author Chirag Parikh, M.D., director of the Program of Applied Translational Research and associate professor of nephrology at Yale School of Medicine and the Veterans Affairs Medical Center. “These newer biomarkers of kidney injury, often referred to as the ‘troponins of the kidney,’ have the potential to shape the future definitions and trials of acute kidney injury.”

The Yale researchers, along with those from other institutions in the United States and Canada, are known as the Translational Research Investigating Biomarker End-Points in AKI consortium (TRIBE-AKI), a multidisciplinary group of academic investigators with expertise in pre-clinical, translational, epidemiological, and health services research.

First author is Steven Coca of Yale; other authors are Harlan Krumholz of Yale; Amit Garg, and Heather Thiessen-Philbrook of Western University in London, Ontario; Jay Koyner of the University of Chicago; Uptal Patel of Duke University; and Michael Shlipak of the Veterans Affairs Medical Center at the University of California, San Francisco.

This study was supported by grants from the National Institutes of Health (R01HL085757, K23DK080132, and K24DK090203), and from Abbott Diagnostics, and Sekisui Diagnostics, Inc.

The results appear in the Journal of the American Society of Nephrology.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Novel Technique for Kidney Research Developed
To better understand how the treatment leads to kidney damage, and possibly prevent it, a team of researchers at Yale School of Medicine developed a new 3D-imaging technique to peer deep into these vital organs.
Thursday, August 27, 2015
Shedding Light On Century-Old Biochemical Mystery
Yale scientists have used magnetic resonance measurements to show how glucose is metabolized in yeast to answer the puzzle of the “Warburg Effect.”
Thursday, August 20, 2015
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
Wednesday, July 08, 2015
Yale Team finds why BRCA Gene Resists Cancer Treatment
The University researchers have discovered why a key molecular assistant is crucial to the function of the BRCA2 gene.
Tuesday, July 07, 2015
New Type of Drug Can Target All Disease-causing Proteins
Current drugs block the actions of only about a quarter of known disease-causing proteins, but Yale University researchers have developed a technology capable of not just inhibiting, but destroying every protein it targets.
Monday, June 15, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Researchers Solve Multiple Sclerosis Puzzle
Yale study shows the role that T cells play in MS.
Monday, May 18, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
New Tool To Explore Mysteries Of The Immune System
Yale scientists use CyTOF to study a range of conditions.
Monday, April 20, 2015
A Faster, Less Expensive Way To Analyze Gene Activity
Yale researchers have devised a method that could reduce the time and cost of analyzing gene activity.
Tuesday, March 03, 2015
Li Ka Shing Foundation Renews Support for Yale Stem Cell Center
New generous grant of $1.86 million from LKSF to support education and healthcare initiatives.
Saturday, February 28, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Yale Team Identifies Key Process In Brain Development
miR-107 shown to play essential role in regulating normal brain development.
Friday, February 06, 2015
Cold Virus Replicates Better At Cooler Temperatures
Study shows that the immune response to rhinovirus is influenced by temperature.
Tuesday, January 06, 2015
Scientific News
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Treatment for Obesity Developed
Researchers at the University of Liverpool, working with a global healthcare company, have helped develop a new treatment for obesity.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Will Brain Palpation Soon Be Possible?
Researchers have developed non-invasive brain imaging technique which provides the same information as physical palpation.
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Groundbreaking Computer Program Diagnoses Cancer in Two Days
Researchers have combined genetics with computer science and created a new diagnostic technology can with 85 per cent certainty identify the source of the disease and thus target treatment and, ultimately, improve the prognosis for the patient.
Michigan Researchers Use Raman Spectroscopy
inVia confocal Raman microscope used in the study of various childhood diseases.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos