Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Identifies Potential Therapeutic Target for Incurable, Rare Type of Soft-Tissue Cancer

Published: Friday, December 27, 2013
Last Updated: Thursday, December 26, 2013
Bookmark and Share
UT Southwestern scientists study published online in Cell Reports.

A deadly, rare type of soft-tissue cancer may be completely eradicated simply by inhibiting a key protein involved in its growth, UT Southwestern Medical Center researchers report.

In the study, published online in Cell Reports, scientists found that inhibiting the action of a protein called BRD4 caused cancer cells to die in a mouse model of malignant peripheral nerve sheath tumors (MPNSTs).

“This study identifies a potential new therapeutic target to combat MPNST, an incurable type of cancer that is typically fatal,” said Dr. Lu Le, Assistant Professor of Dermatology at UT Southwestern and senior author of the study. “The findings also provide important insight into what causes these tumors to develop.”

MPNSTs are highly aggressive sarcomas that form around nerves. These tumors can develop sporadically, but about half of cases are in patients with a genetic disorder called neurofibromatosis type 1 (NF1) that affects 1 in 3,500 people. About 10 percent of NF1 patients will develop MPNST, which usually evolves from a benign but often large and disfiguring tumor called a plexiform neurofibroma.

Up to now, the preferred treatment for MPNST has been surgical removal, but that oftentimes is difficult or impossible due to the tumor’s location around nerves. Radiation and chemotherapy are other options, but their effectiveness is limited. The five-year survival rate for MPNST patients is about 50 percent.

By studying changes in cells as they evolved into cancerous MPNSTs, researchers in Dr. Le’s laboratory were able to determine that BRD4, a bromodomain protein that binds to DNA to regulate gene activation, is expressed at an unusually high level in MPNST cancer cells.

This action caused another protein called BCL-2 to keep cancer cells from dying. Alternately, when researchers inhibited BRD4 either genetically in the mice or pharmacologically by administering a compound called JQ1, the tumors shrank.

“These treatments suppressed tumor growth and caused the cancer cells to undergo apoptosis, or cell death. This is why BRD4 inhibition is exquisitely effective against MPNSTs and may represent a paradigm shift in therapy for these patients,” Dr. Le said.

The same class of drug used in the experiments is currently being evaluated in phase 1 and 2 trials for treatment of leukemia and a subtype of lung cancer. Meanwhile, UT Southwestern is working with a pharmaceutical company to develop a similar BRD4-inhibiting drug to launch a clinical trial for MPNST patients.

New drugs are desperately needed to treat MPNST and provide hope to NF1 patients at highest risk for this cancer, said Dr. Le, who also serves as Co-director of UT Southwestern’s Comprehensive Neurofibromatosis Clinic. The clinic offers neurofibromatosis patients access to the latest clinical trials and treatments.

Co-directed by Dr. Laura Klesse, Assistant Professor of Pediatrics, the clinic is part of the Harold C. Simmons Comprehensive Cancer Center and serves patients with all three types of hereditary neurofibromatosis, including the dominant NF1 type and rarer NF2 and Schwannomatosis forms.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More Than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Limits Desire To Drink Alcohol
Research teams have identified a gene variant that suppresses the desire to drink alcohol.
Tuesday, November 29, 2016
Tau Cluster Structure Determines Dementia Future
Research helps explain diversity of dementias linked to tau protein aggregation.
Tuesday, November 01, 2016
UTSW Finds Key Step in Brain Cell Death During Stroke
Researchers at UTSW have found novel function for old protein in work that could lead to new ways to protect brain from stroke damage.
Saturday, October 08, 2016
Contribution Increases by Tenfold The Mouse Mutation Resources of One Type Available
The repository provides academic researchers with unique genetic models that are unavailable commercially.
Thursday, October 06, 2016
Alzheimer’s Linked Protein Can Be Removed From Brain Without Hindering Memory, Learning
Researchers at UTSW have found that the mice can maintain their learning and memory when virtually all ApoE is removed from the brain but kept present in the liver to filter cholesterol.
Wednesday, October 05, 2016
Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
The team of researchers grew crystals of nicotinic receptors, a breakthrough that scientists expect will help them develop new treatments by understanding nicotine’s molecular effects.
Tuesday, October 04, 2016
Beige Fat Formation Linked to Anti-diabetic Effect
Researchers at UTSW have found that the protein connexin 43 forms cell-to-cell communication channels on the surface of emerging beige fat cells that amplify the signals from those few nerve fibers.
Saturday, October 01, 2016
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
Friday, September 30, 2016
Gene Regulation in Brain May Explain Repetitive Behaviors in Rett Syndrome Patients
The research could be a key step in developing treatments to eliminate symptoms that drastically impair the quality of life in Rett patients.
Tuesday, September 27, 2016
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Wednesday, September 21, 2016
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Wednesday, September 21, 2016
Scientists Enhance Ability of Antibiotics to Defeat Resistant Types of Bacteria
Researchers at UTSW have reported successful use of a synthetic molecule to enhance antibiotic effectiveness against certain pathogens.
Saturday, September 17, 2016
Researchers Identify Method of Creating Long-Lasting Memories
Researchers at UTSW have found that the attention-grabbing experiences trigger the release of memory-enhancing chemicals to help etch memories into the brain.
Thursday, September 08, 2016
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Tuesday, August 23, 2016
Signaling Molecule Regulates Release of the Hunger Hormone Ghrelin
Researchers at UT Southwestern have identified that the blocking release of the hormone ghrelin may mediate low blood sugar effect in children taking beta blockers.
Tuesday, August 23, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Personality Traits, Psychiatric Disorders Linked to Specific Genomic Locations
Researchers have unearthed genetic correlations between personality traits and psychiatric disorders.
Forensic 3D Documentation of Skin Injuries
In this study, the validity of using photogrammetry for documenting injuries in a pathological context was demonstrated.
3-D Printed Dog’s Nose Improves Vapor Detection
By mimicking how dogs get their whiffs, a team of government and university researchers have demonstrated that “active sniffing” can improve by more than 10 times the performance of current technologies that rely on continuous suction to detect trace amounts of explosives and other contraband.
New Markers for Forensic Body-fluid Identification
University of Bonn researchers have successfully identified specific Micro-RNA signatures to help forensically identify body fluids.
Genetics Control Regenerative Properties Of Stem Cells
Researchers define how genetic factors control regenerative properties of blood-forming stem cells.
Major Neuroscience Initiative Launched
Tianqiao and Chrissy Chen Institute invest $115 million to further expand neuroscience research, while Caltech construct $200 million biosciences complex.
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!