Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetically Identical Bacteria Can Behave in Radically Different Ways

Published: Friday, January 03, 2014
Last Updated: Friday, January 03, 2014
Bookmark and Share
Although a population of bacteria may be genetically identical, individual bacteria within that population can act in radically different ways.

This phenomenon is crucial in the bacteria’s struggle for survival. The more diversity a population of bacteria has, the more likely it will contain individuals able to take advantage of a new opportunity or overcome a new threat, including the threat posed by an antibiotic.

In a recent study, researchers at the University of Washington showed that when a bacterial cell divides into two daughter cells there can be an uneven distribution of cellular organelles. The resulting cells can behave differently from each other, depending on which parts they received in the split.

“This is another way that cells within a population can diversify. Here we’ve shown it in a bacterium, but it probably is true for all cells, including human cells,” said Dr. Samuel Miller, UW professor of microbiology, genome sciences, and medicine and the paper’s senior author.

Bridget Kulasekara, who obtained a Ph.D in the UW Molecular and Cellular Biology Program, was the paper’s lead author. Other contributors included: Hemantha Kulasekara, Matthias Christen, and Cassie Kamischke, who work in Miller’s lab, and Paul Wiggins, UW assistant professor of physics and bioengineering. The paper appears in the online journal eLife.

In an earlier paper, Miller and his colleagues showed that when bacteria divided, the concentration of an important regulatory molecule, called cyclic diguanosine monophosphate (c-di-GMP). was unevenly distributed between the two progeny. c-di-GMP is a second messenger molecule. That finding was published in the journal Science in 2010.

Second messenger molecules transmit signals from sensors or receptors on the cell’s external membrane to targets within the cell, where they can rapidly alter a wide variety of cellular functions, such as metabolism and mobility. The ability to respond to external stimuli quickly is important for the bacteria’s survival. For instance, to stay alive, a bacterium must not  hesitate to  swim towards nutrients or away from toxins. This directional movement of microorganisms, spurred by the presence of a helpful or harmful substance, is known as chemotaxis.

“The effect of second messengers is almost immediate,” said Miller. “They allow bacteria to change their behavior within seconds.”

To detect the difference in c-di-GMP levels between cells, the researchers used a technique called Förster resonance energy transfer microscopy, or FRET microscopy. This allowed them to measure nanomolar changes of the concentration of c-di-GMP within individual bacteria as the changes happened second by second.

Different concentrations of c-di-GMP can have a profound influence on a cell’s behavior. For example, in the bacteria Pseudomonas aeruginosa, cells with high levels of c-di-GMP tend to remain still, adhere to surfaces and form colonies. Those with low levels, on the other hand, tend to actively swim about by using a corkscrew-shaped propeller located at one end of the bacterium.

In the latest study, the Miller and his colleagues worked out the molecular mechanism behind the difference in c-di-GMP concentrations seen between daughter cells.

When Pseudomonas cells divide, they pinch in half to create two daughter cells. Although the cells are genetically identical, only one daughter cell can inherit the bacterium’s single propeller. The other cell can synthesize its own propeller, but immediately after division the two cells are quite different.

What Miller and his coworkers report in the eLife paper is that the daughter cell that inherits the propeller also inherits an enzyme that is closely associated with the propeller that degrades c-di-GMP, as well as the organelle involved in directing  movement toward or away from stimuli that activates this enzyme.

Together these two organelles work in concert to lower the concentration of c-di-GMP and control swimming.

“What we have shown is that the uneven inheritance of organelles is another way cells have to create diversity and increase the chances of the survival of its species,” Miller said.

He added that his team’s findings may help explain how bacteria resist antibiotic treatments by always having some cells in their populations be in a slow-growing, resting state. Because antibiotics target fast-growing cells, these resting cells are more likely to survive the treatment. The findings might also help explain how some bacteria are able to adhere to and colonize surfaces such as urinary catheters, intravenous lines and heart valves.

In ongoing research, Miller’s team is trying to get a better understanding of the signals that can change second messenger concentrations very quickly and is screening compounds that could interfere with or alter those signals. Such compounds could be used to combat drug resistance, for instance, or inhibit a bacterium’s ability to adhere to surfaces and form slime-like colonies, called biofilms, that are highly resistant to antibiotics.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

UW to Invest $37 Million in Nanofabrication Lab
The Washington Nanofabrication Facility is being developed to support start-ups and researchers who can not afford to invest high tech nano production equipment.
Wednesday, August 05, 2015
A Novel Drug to FIght Malaria
An international team of scientists has announced that a new compound to fight malaria is ready for human trials.
Friday, July 17, 2015
Engineering Yeast that Speaks
Scientists at the University of Washington say they have engineered yeast cells that can "talk" to one another, using the plant hormone auxin.
Thursday, July 02, 2015
Plants make Big Decisions with Microscopic Cellular Competition
A team of University of Washington researchers has identified a mechanism that some plant cells use to receive complex and contradictory messages from their neighbours.
Thursday, June 18, 2015
Bacteria can Sense their Surroundings
Knowing how environmental signals modulate bacterial behavior could help combat biofouling and antibiotic resistance.
Thursday, June 11, 2015
Antibody Pries Loose Bacteria’s Grip
Study finds novel method of improving antibody efficacy.
Monday, May 18, 2015
Dying Cells Can Protect their Stem Cells from Destruction
An SOS signal from dying daughter cells allows their mother stem cells to protect themselves from radiation and chemotherapy damage.
Wednesday, May 13, 2015
Genetic Errors Linked To Aging Underlie Leukemia That Develops After Cancer Treatment
New research by Daniel Link, MD, and colleagues at The Genome Institute at Washington University has revealed that mutations that accumulate randomly as a person ages can play a role in a fatal form of leukemia that develops after treatment for another cancer.
Wednesday, December 10, 2014
Microfluidics Device Could Help Diagnose Pancreatic Cancer in Minutes
This is the first time material larger than a single-celled organism has successfully moved in a microfluidic device.
Monday, February 10, 2014
Depletion of ‘Traitor’ Immune Cells Slows Cancer Growth in Mice
When a person has cancer, some of the cells in his or her body have changed and are growing uncontrollably.
Wednesday, September 25, 2013
Breakthrough in Detecting DNA Mutations Could Help Treat Tuberculosis and Cancer
The slightest variation in a sequence of DNA can have profound effects.
Tuesday, July 30, 2013
Tuberculosis Fighter and Promoter Reveals What’s behind its Split Identity
Tumor necrosis factor – normally an infection-fighting substance produced by the body – can actually heighten susceptibility to tuberculosis if its levels are too high.
Monday, April 15, 2013
Extra Chromosome 21 Removed from Down Syndrome Cell Line
Scientists have succeeded in removing the extra copy of chromosome 21 in cell cultures derived from a person with Down syndrome, a condition in which the body’s cells contain three copies of chromosome 21.
Monday, November 12, 2012
Chemical Makes Blind Mice See
Researchers who discovered the chemical are working on an improved compound that may someday allow people with degenerative blindness to see again.
Wednesday, August 01, 2012
Researchers to Engineer Kidney Tissue Chip for Predicting Drug Safety
Seattle researchers will be part of the new federal initiative to engineer 3-dimensional chips containing living cells and tissues that imitate the structure and function of human organs.
Wednesday, August 01, 2012
Scientific News
Health Risks of Saturated Fats Aggravated by Immune Response
Research shows that the presence of saturated fats resulted in monocytes migrating into the tissues of vital organs.
Changing the Biological Data Visualisation World
Scientists at TGAC, alongside European partners, have created a cutting-edge, open source community for the life sciences.
NIH Study Finds Calorie Restriction Lowers Some Risk Factors for Age-Related Diseases
Two-year trial did not produce expected metabolic changes, but influenced other life span markers.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!