Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Computational Methods Identify New Alloys

Published: Monday, January 06, 2014
Last Updated: Monday, January 06, 2014
Bookmark and Share
Duke University researchers have used computational methods to identify dozens of previously unknown platinum-group alloys.

Platinum is used to transform toxic fumes leaving a car’s engine into more benign gasses, to produce high octane gasoline, plastics and synthetic rubbers, and to fight the spread of cancerous tumors. But as anyone who has ever shopped for an engagement ring knows, platinum ain’t cheap.

If just one of the compounds identified in the new study is comparable in performance but easier on the wallet, it would be a boon to many industries worldwide as well as the environment.

 “We’re looking at the properties of ‘expensium’ and trying to develop ‘cheapium,’” said Stefano Curtarolo, director of Duke’s Center for Materials Genomics. “We’re trying to automate the discovery of new materials and use our system to go further faster.”

The research is part of the Materials Genome Initiative launched by President Barack Obama in 2011. The initiative’s goal is to support centers, groups and researchers in accelerating the pace of discovery and deployment of advanced material systems crucial to achieving global competitiveness in the 21st century. The study appears in the Dec. 30 edition of the American Physical Society journal Physics and is highlighted in a Viewpoint article in the same issue.

The identification of the new platinum-group compounds hinges on databases and algorithms that Curtarolo and his group have spent years developing. Using theories about how atoms interact to model chemical structures from the ground up, Curtarolo and his group screened thousands of potential materials for high probabilities of stability. After nearly 40,000 calculations, the results identified 37 new binary alloys in the platinum-group metals, which include osmium, iridium ruthenium, rhodium, platinum and palladium.

These metals are prized for their catalytic properties, resistance to chemical corrosion and performance in high-temperature environments, among other properties. Commercial applications for the group include electrical components, corrosion-resistance apparatus, fuel cells, chemotherapy and dentistry. And because of their worldwide scarcity, each metal fetches a premium price.

Now it is up to experimentalists to produce these new materials and discover their physical properties. Previous studies have shown that Curtarolo’s methods are highly accurate in generating recipes for new, stable compounds, but they don’t provide much information about their behaviors.

“The compounds that we find are almost always possible to create,” said Curtarolo. “However, we don’t always know if they are useful. In other words, there are plenty of needles in the haystack; a few of those needles are gold, but most are worthless iron.”

In addition to identifying unknown alloys, the study also provides detailed structural data on known materials. For example, there are indications that some may be structurally unstable at low temperatures. This isn’t readily apparent because creating such materials is difficult, requiring high temperatures or pressures and very long equilibration processes.

“We hope providing a list of targets will help identify new compounds much faster and more cheaply,” said Curtarolo. “Physically going through these potential combinations just to find the targets would take 200 to 300 graduate students five years. As it is, characterizing the targets we identified should keep the experimentalists busy for 20.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More Than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Enzyme Structure May Aid Antibiotic Development
Targeted enzyme is essential to every known strain of bacteria.
Wednesday, April 20, 2016
Coding and Computers Help Spot Methane, Explosives
Coded apertures improve and shrink mass spectrometers for field use.
Tuesday, April 19, 2016
Why Bearcats Smell Like Buttered Popcorn
Researchers pinpoint chemical compound that gives rare animal its popcorn-like scent.
Friday, April 15, 2016
Antibiotics Don't Promote Swapping of Resistance Genes
Bacterial resistance spreads through population dynamics, not an increase in gene transfers.
Wednesday, April 13, 2016
Genetic Elements that Drive Regeneration
Limb or organ regrowth may be hidden in our genes.
Friday, April 08, 2016
Immunity Genes Could Protect Some From E. Coli
When a child comes home from preschool with a stomach bug that threatens to sideline the whole family for days, why do some members of the family get sick while others are unscathed?
Monday, January 25, 2016
Disrupting Cell’s Supply Chain Freezes Cancer Virus
When the cancer-causing Epstein-Barr virus moves into a B-cell of the human immune system, it tricks the cell into rapidly making more copies of itself, each of which will carry the virus.
Thursday, January 21, 2016
Slow Stem Cell Division May Cause Small Brains
Delayed neural stem cells make the wrong cells during development.
Tuesday, January 12, 2016
Travelling Salesman Uncorks Synthetic Biology Bottleneck
Computer program scrambles genetic codes for production of repetitive DNA and synthetic molecules.
Thursday, January 07, 2016
Catching Cellular Impacts of Bubbles and Jets
New technique captures diverse effects of cavitation bubbles on individual cells.
Thursday, December 10, 2015
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Tuesday, November 10, 2015
Molecular ‘Kiss Of Death’ Flags Pathogens For Destruction
Researchers have discovered that our bodies mark pathogen-containing vacuoles for destruction by using a molecule called ubiquitin, commonly known as the "kiss of death."
Wednesday, September 30, 2015
Newly Identified Biochemical Pathway Could Be Target for Insulin Control
Researchers at Duke Medicine and the University of Alberta are reporting the identification of a new biochemical pathway to control insulin secretion from islet beta cells in the pancreas, establishing a potential target for insulin control.
Tuesday, September 29, 2015
Protein Structures Assemble and Disassemble On Command
Gene sequences may enable control of building bio-structures.
Wednesday, September 23, 2015
Molecular Tinkering Doubles Cancer Drug’s Efficacy
Researchers have packaged a widely used cancer drug into nanoparticles, more than doubling its effectiveness at destroying tumors.
Thursday, August 06, 2015
Scientific News
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Releasing Cancer Cells for Better Analysis
A new device developed at the University of Michigan could provide a non-invasive way to monitor the progress of an advanced cancer treatment.
Apricot Kernels Pose Risk of Cyanide Poisoning
Eating more than three small raw apricot kernels, or less than half of one large kernel, in a serving can exceed safe levels. Toddlers consuming even one small apricot kernel risk being over the safe level.
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
Lab-on-a-Chip for Detecting Glucose
By integrating microfluidic chips with fiber optic biosensors, researchers in China are creating ultrasensitive lab-on-a-chip devices to detect glucose levels.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
COPD Linked to Increased Bacterial Invasion
Persistent inflammation in COPD may result from a defect in the immune system that allows airway bacteria to invade deeper into the lung.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!