Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chromosome Therapy to Correct a Severe Chromosome Defect

Published: Tuesday, January 14, 2014
Last Updated: Tuesday, January 14, 2014
Bookmark and Share
Induced pluripotent stem cell reprogramming offers potential to correct abnormal chromosomes.

Geneticists from Ohio, California and Japan joined forces in a quest to correct a faulty chromosome through cellular reprogramming. Their study, published online January 12, 2014 in Nature, used stem cells to correct a defective “ring chromosome” with a normal chromosome. Such therapy has the promise to correct chromosome abnormalities that give rise to birth defects, mental disabilities and growth limitations.

“In the future, it may be possible to use this approach to take cells from a patient that has a defective chromosome with multiple missing or duplicated genes and rescue those cells by removing the defective chromosome and replacing it with a normal chromosome,” said senior author Anthony Wynshaw-Boris, MD, PhD, James H. Jewell MD '34 Professor of Genetics and chair of Case Western Reserve School of Medicine Department of Genetics and Genome Sciences and University Hospitals Case Medical Center.

Wynshaw-Boris led this research while a professor in pediatrics, the Institute for Human Genetics and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UC San Francisco (UCSF) before joining the faculty at Case Western Reserve in June 2013.

Individuals with ring chromosomes may display a variety of birth defects, but nearly all persons with ring chromosomes at least display short stature due to problems with cell division. A normal chromosome is linear, with its ends protected, but with ring chromosomes, the two ends of the chromosome fuse together, forming a circle. This fusion can be associated with large terminal deletions, a process where portions of the chromosome or DNA sequences are missing. These deletions can result in disabling genetic disorders if the genes in the deletion are necessary for normal cellular functions.

The prospect for effective countermeasures has evaded scientists — until now. The international research team discovered the potential for substituting the malfunctioning ring chromosome with an appropriately functioning one during reprogramming of patient cells into induced pluripotent stem cells (iPSCs). iPSC reprogramming is a technique that was developed by Shinya Yamanaka, MD, PhD, a co-corresponding author on the Nature paper. Yamanaka is a senior investigator at the UCSF-affiliated Gladstone Institutes, a professor of anatomy at UCSF, and the director of the Center for iPS Cell Research and Application (CiRA) at theInstitute for Integrated Cell-Material Sciences (iCeMS) in Kyoto University. He won the Nobel Prize in Medicine in 2012 for developing the reprogramming technique.

Marina Bershteyn, PhD, a postdoctoral fellow in the Wynshaw-Boris lab at UCSF, along with Yohei Hayashi, PhD, a postdoctoral fellow in the Yamanaka lab at the Gladstone Institutes, reprogrammed skin cells from three patients with abnormal brain development due to a rare disorder called Miller-Dieker Syndrome, which results from large terminal deletions in one arm of chromosome 17. One patient had a ring chromosome 17 with the deletion, and the other two patients had large terminal deletions in one copy of chromosome 17, but not a ring. Additionally, each of these patients had one normal chromosome 17.

The researchers observed that, after reprogramming, the ring chromosome 17 that had the deletion vanished entirely and was replaced by a duplicated copy of the normal chromosome 17. However, the terminal deletions in the other two patients remained after reprogramming. To make sure this phenomenon was not unique to ring chromosome 17, the researchers reprogrammed cells from two different patients that each had ring chromosome 13. These reprogrammed cells also lost the ring chromosome, and contained a duplicated copy of the normal chromosome 13.

“It appears that ring chromosomes are lost during rapid and continuous cell divisions during reprogramming,” Yamanaka said. “The duplication of the normal chromosome then corrects for that lost chromosome.”

“Ring loss and duplication of whole chromosomes occur with a certain frequency in stem cells,” explained Bershteyn. “When chromosome duplication compensates for the loss of the corresponding ring chromosome with a deletion, this provides a possible avenue to correct large-scale problems in a chromosome that have no chance of being corrected by any other means.”  

“It is likely that our findings apply to other ring chromosomes, since the loss of the ring chromosome occurred in cells reprogrammed from three different patients,” Hayashi said.

According to Wynshaw-Boris, “In theory, the way you could potentially correct a chromosome with deletions or duplications is to make a ring out of it and then get rid of the ring chromosome during reprogramming. Ring chromosomes are quite rare, but chromosome abnormalities are much more common and cause a variety of severe birth defects. So far, it is only possible to do this chromosome therapy for cells in culture, not in human beings. However, it may be useful to use this for tissue repair of birth defects and other abnormalities found in individuals with chromosomal abnormalities as techniques for regenerative medicine are developed in the future.”

Other collaborators on the paper included Guillaume Desachy, M.Sc., Edward C. Hsiao, MD, Salma Sami, Kathryn M. J. Tsang, and Lauren A. Weiss, PhD, of UCSF; and Arnold R. Kriegstein, MD, PhD of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How Early Childhood Vaccination Reduces Leukemia Risk
Chronic infections push ‘pre-leukemia’ cells, common in newborns, into malignancy.
Thursday, May 21, 2015
Blood Test Trumps Accuracy of Standard Screening in Detecting Down Syndrome in Early Pregnancy
A blood test undertaken between 10 to 14 weeks of pregnancy may be more effective in diagnosing Down syndrome and two other less common chromosomal abnormalities than standard non-invasive screening techniques.
Thursday, April 02, 2015
Developing a Noninvasive Test for Endometriosis
UCSF researchers identify patterns of genetic activity that could help in early detection of disorder.
Monday, November 24, 2014
Environmental Carcinogens Leave Distinctive Genetic Imprints in Tumors
Chemically induced tumors bear ‘smoking gun’ traces that sharply differentiate them from genetically engineered cancers.
Thursday, November 06, 2014
Human Cancer Prognosis Is Related to Newly Identified Immune Cell
A rare population of tumor-associated “good” cells slows cancer.
Monday, October 20, 2014
Type 1 Diabetes Drug Proves Effective in Clinical Trial
Drug developed by UCSF researcher shows promise for blocking advance of disease in earliest stages.
Thursday, August 08, 2013
Supreme Court Rules That Human Genes Can’t Be Patented
Most agree that the ruling reduces barriers to genetic testing and enables scientists to further genetic research and share data aimed ultimately at preventing and curing disease.
Friday, June 14, 2013
UCSF Medical Center Publishes First Sustainability Report
Report documents a variety of initiatives underway for constructing green buildings, conserving energy and water, offering sustainable food and creating systems to divert waste.
Friday, April 12, 2013
HIV Testing Increased and Infection Reduced in Africa with Community Intervention
Free mobile HIV testing and counseling, same-day results and post-test support reduces HIV infections by 14 percent.
Thursday, March 07, 2013
Stem Cell Survival Strategy Is Key to Blood and Immune System Health
Stem cells of the aging bone marrow recycle their own molecules to survive and keep replenishing the blood and immune systems as the body ages.
Monday, February 18, 2013
Scientists Identify Key Biological Mechanism in Multiple Sclerosis
Imaging study finds potential new target to combat disease.
Tuesday, December 04, 2012
Researchers Identify Protein Key in Proliferation of Lymphoma Cells
Inhibiting PERK protein could reduce formation of cancerous tumors.
Thursday, November 29, 2012
Multiple Sclerosis ‘Immune Exchange’ Between Brain and Blood is Uncovered
UCSF finding of movement by disease-causing B cells gives hope for new treatments and diagnostics.
Thursday, November 22, 2012
UCSF Receives $2 Million to Advance UC-Wide Biobanking Initiative
Goal of the project is to develop an ethical, efficient and sustainable system for obtaining, processing and sharing biospecimens and data.
Thursday, November 15, 2012
Heart Failure Drug Shows Promise in Phase III Clinical Trial
Results were presented by John Teerlink at the American Heart Association’s Scientific Sessions 2012.
Monday, November 12, 2012
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Light of Fireflies for Medical Diagnostics
EPFL scientists have exploited the light of fireflies in a new method that detects biological molecules without the need for complex devices and high costs.
Rice Disease-Resistance Discovery Closes the Loop for Scientific Integrity
Researchers reveal how disease resistant rice detects and responds to bacterial infections.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!