Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chromosome Therapy to Correct a Severe Chromosome Defect

Published: Tuesday, January 14, 2014
Last Updated: Tuesday, January 14, 2014
Bookmark and Share
Induced pluripotent stem cell reprogramming offers potential to correct abnormal chromosomes.

Geneticists from Ohio, California and Japan joined forces in a quest to correct a faulty chromosome through cellular reprogramming. Their study, published online January 12, 2014 in Nature, used stem cells to correct a defective “ring chromosome” with a normal chromosome. Such therapy has the promise to correct chromosome abnormalities that give rise to birth defects, mental disabilities and growth limitations.

“In the future, it may be possible to use this approach to take cells from a patient that has a defective chromosome with multiple missing or duplicated genes and rescue those cells by removing the defective chromosome and replacing it with a normal chromosome,” said senior author Anthony Wynshaw-Boris, MD, PhD, James H. Jewell MD '34 Professor of Genetics and chair of Case Western Reserve School of Medicine Department of Genetics and Genome Sciences and University Hospitals Case Medical Center.

Wynshaw-Boris led this research while a professor in pediatrics, the Institute for Human Genetics and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UC San Francisco (UCSF) before joining the faculty at Case Western Reserve in June 2013.

Individuals with ring chromosomes may display a variety of birth defects, but nearly all persons with ring chromosomes at least display short stature due to problems with cell division. A normal chromosome is linear, with its ends protected, but with ring chromosomes, the two ends of the chromosome fuse together, forming a circle. This fusion can be associated with large terminal deletions, a process where portions of the chromosome or DNA sequences are missing. These deletions can result in disabling genetic disorders if the genes in the deletion are necessary for normal cellular functions.

The prospect for effective countermeasures has evaded scientists — until now. The international research team discovered the potential for substituting the malfunctioning ring chromosome with an appropriately functioning one during reprogramming of patient cells into induced pluripotent stem cells (iPSCs). iPSC reprogramming is a technique that was developed by Shinya Yamanaka, MD, PhD, a co-corresponding author on the Nature paper. Yamanaka is a senior investigator at the UCSF-affiliated Gladstone Institutes, a professor of anatomy at UCSF, and the director of the Center for iPS Cell Research and Application (CiRA) at theInstitute for Integrated Cell-Material Sciences (iCeMS) in Kyoto University. He won the Nobel Prize in Medicine in 2012 for developing the reprogramming technique.

Marina Bershteyn, PhD, a postdoctoral fellow in the Wynshaw-Boris lab at UCSF, along with Yohei Hayashi, PhD, a postdoctoral fellow in the Yamanaka lab at the Gladstone Institutes, reprogrammed skin cells from three patients with abnormal brain development due to a rare disorder called Miller-Dieker Syndrome, which results from large terminal deletions in one arm of chromosome 17. One patient had a ring chromosome 17 with the deletion, and the other two patients had large terminal deletions in one copy of chromosome 17, but not a ring. Additionally, each of these patients had one normal chromosome 17.

The researchers observed that, after reprogramming, the ring chromosome 17 that had the deletion vanished entirely and was replaced by a duplicated copy of the normal chromosome 17. However, the terminal deletions in the other two patients remained after reprogramming. To make sure this phenomenon was not unique to ring chromosome 17, the researchers reprogrammed cells from two different patients that each had ring chromosome 13. These reprogrammed cells also lost the ring chromosome, and contained a duplicated copy of the normal chromosome 13.

“It appears that ring chromosomes are lost during rapid and continuous cell divisions during reprogramming,” Yamanaka said. “The duplication of the normal chromosome then corrects for that lost chromosome.”

“Ring loss and duplication of whole chromosomes occur with a certain frequency in stem cells,” explained Bershteyn. “When chromosome duplication compensates for the loss of the corresponding ring chromosome with a deletion, this provides a possible avenue to correct large-scale problems in a chromosome that have no chance of being corrected by any other means.”  

“It is likely that our findings apply to other ring chromosomes, since the loss of the ring chromosome occurred in cells reprogrammed from three different patients,” Hayashi said.

According to Wynshaw-Boris, “In theory, the way you could potentially correct a chromosome with deletions or duplications is to make a ring out of it and then get rid of the ring chromosome during reprogramming. Ring chromosomes are quite rare, but chromosome abnormalities are much more common and cause a variety of severe birth defects. So far, it is only possible to do this chromosome therapy for cells in culture, not in human beings. However, it may be useful to use this for tissue repair of birth defects and other abnormalities found in individuals with chromosomal abnormalities as techniques for regenerative medicine are developed in the future.”

Other collaborators on the paper included Guillaume Desachy, M.Sc., Edward C. Hsiao, MD, Salma Sami, Kathryn M. J. Tsang, and Lauren A. Weiss, PhD, of UCSF; and Arnold R. Kriegstein, MD, PhD of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More Than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Newborn Gut Microbiome Predicts Later Allergy and Asthma
Microbial byproducts link particular early-life gut microbes to immune dysfunction.
Wednesday, September 14, 2016
NASA's DNA Sequencing in Space is a Success
DNA has been sequenced in space for the first time ever for the Biomolecule Sequencer investigation, using the MinION sequencing device.
Wednesday, August 31, 2016
Some Breast Cancer Patients With Low Genetic Risk Could Skip Chemotherapy
Genetic test can help predict survival and guide treatment options.
Friday, August 26, 2016
Immune-Cell Population Predicts Immunotherapy Response in Melanoma
All patients with high levels of one immune-cell type responded to treatment.
Tuesday, August 16, 2016
Gene Variant Explains Differences in Diabetes Drug Response
International precision medicine study advances understanding of the biology of Metformin.
Thursday, August 11, 2016
Go-Between Immune Cell is Key to Priming the Body’s Fight Against Cancer
‘Antigen-presenting cell’ activates T cells by alerting them to the presence of tumors.
Friday, July 15, 2016
Proteins in Blood of Heart Disease Patients May Predict Adverse Events
Nine-protein test shown superior to conventional assessments of risk.
Friday, June 24, 2016
Tarantula Toxins Offer Key Insights Into Neuroscience of Pain
Toxins extracted from ornamental baboon tarantula may be used as tools to study disorders ranging from irritable bowel syndrome to epilepsy.
Tuesday, June 07, 2016
Cirrhosis-Causing Cells Converted to Healthy Liver Cells in Mice
New approach that repairs liver from within may be more efficient than cell transplants.
Friday, June 03, 2016
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Friday, May 27, 2016
Immune System Implicated in Gastroschisis
UCSF researchers show that the immune system is implicated in gastroschisis. The findings could lead to improved treatments for the belly birth defect.
Tuesday, May 17, 2016
Cytokine Triggers Immune Response at Expense of Blood Renewal
Research highlights promise of Anti-IL-1 drugs to treat chronic inflammatory disease.
Tuesday, April 26, 2016
Tense Tumours Lead to Poorer Prognosis
UCSF researchers have discovered that the chances of survival for patients with pancreatic adenocarcinoma (PDAC) — the most common type of pancreatic cancer — may depend in part on how tense their tumors are.
Tuesday, April 19, 2016
Gene Behind Rare Childhood Syndrome Identified
Online activism by one patient’s mother spurred research collaboration which led to the identification of a new genetic syndrome.
Friday, April 15, 2016
UCSF Immunologist to Head New Parker Institute for Cancer Immunotherapy
Renowned UC San Francisco immunologist Jeffrey Bluestone, PhD, has been named president and CEO of the Parker Institute for Cancer Immunotherapy, a national initiative launched with a $250 million grant from The Parker Foundation.
Thursday, April 14, 2016
Scientific News
Point of Care Diagnostics - A Cautious Revolution
Advances in molecular biology, coupled with the miniaturization and improved sensitivity of assays and devices in general, have enabled a new wave of point-of-care (POC) or “bedside” diagnostics.
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Insight into Eye Diseases
Scientists recreate zebrafish cell regeneration from retinal stem cells in mice.
New Discovery May Benefit Farmers Worldwide
Scientists have shown how a crop-microbe 'team' protect against fungal infection.
Antibodies Paving the Way to HIV Vaccine
Researchers uncover factors responsible for the formation of broadly neutralizing HIV antibodies in humans.
Designing Drugs with a Whole New Toolbox
Researchers develop methods to design small, targeted proteins with shapes not found in nature.
Protein Studies Discover Molecular Secrets
Two protein studies have mapped proteins that reveal the secrets to recycling carbon and healing cells.
Tapping Evolution to Improve Biotech Products
Researchers show how 'ancestral sequence reconstruction' can be used to guide engineering of a blood clotting protein.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!