Corporate Banner
Satellite Banner
Scientific Communities
Become a Member | Sign in
Home>News>This Article

Culturing iPS cells with Reduced Infection Risk

Published: Wednesday, January 15, 2014
Last Updated: Wednesday, January 15, 2014
Bookmark and Share
Researchers have developed a new way to easily culture induced pluripotent stem cells that has a low risk of infection in transplant therapy.

The team, which includes Kyoto University’s Center for iPS Cell Research and Application, can create a culture system that unlike the existing technique doesn’t have to use animal ingredients, which are at risk of infection, the journal Scientific Reports said Wednesday.

The researchers said in the journal that the new culture system will be vital in speeding up efforts to apply iPS cells in regenerative medicine.

They found that using fragments of a protein called laminin-511, which can stick cells together, enables cells to be stable on culture dishes or plates. With the method, they have created a safer method for producing iPS cells using amino acids and vitamins instead of animal ingredients.

The conventional method for culturing iPS cells has been to graft them on cell culture dishes and used feeder cells or mouse cells and bovine serum-containing medium as nutrients.

But because there are risks to infections in using tissues and cells, which are created from iPS cells under the existing culture system, there is a need to conduct time-consuming safety tests, Scientific Reports said.

They discovered that human iPS cells developed based on this system can also transform into nerve cells that produce neurotransmitter dopamine, insulin-producing cells and blood cells.

The researchers hope the discovery will eventually lead to clinical applications for illnesses such as Parkinson’s disease and diabetes.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More Than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

The Black Box at the Beginning of Life
Kyoto University sheds light on the earliest stages of human germ cell development.
Monday, September 21, 2015
Bone Marrow Cell Transplants Help Nerve Regeneration
The research carried out at Kyoto University School of Medicine may provide an important step in developing artificial nerves.
Thursday, December 13, 2007
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Microbe Sleuth
Tanja Bosak examines how life and the Earth evolved in tandem during their early history together.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Restoring Vision with Stem Cells
Age-related macular degeneration (AMRD) could be treated by transplanting photoreceptors produced by the directed differentiation of stem cells, thanks to findings published today by Professor Gilbert Bernier of the University of Montreal and its affiliated Maisonneuve-Rosemont Hospital.
The Age of Humans Controlling Microbes
Engineered bacteria could soon be used to detect environmental toxins, treat diseases, and sustainably produce chemicals and fuels.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
Metabolomic Platform Reveals Fundamental Flaw in Common Lab Technology
A new study led by scientists at The Scripps Research Institute (TSRI) shows that a technology used in thousands of laboratories, called gas chromatography mass spectrometry (GC-MS), fundamentally alters the samples it analyzes.
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos