Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

World’s Tiniest Drug Cabinets could be Attached to Cancerous Cells for Long Term Treatment

Published: Wednesday, January 15, 2014
Last Updated: Wednesday, January 15, 2014
Bookmark and Share
Reservoirs of pharmaceuticals could be manufactured to bind specifically to infected tissue such as cancer cells for slow, concentrated delivery of drug treatments.

The findings, from the University of Copenhagen and the Institut Laue-Langevin (ILL), came as a result of neutron reflectometry studies at the world’s leading neutron source in Grenoble, France. They could provide a way to reduce dosages and the frequency of injections administered to patients undergoing a wide variety of treatments, as well as minimising side effects of over-dosing.

The attachment of reservoirs of therapeutic drugs to cell membranes for slow diffusion and continuous delivery inside the cells is a major aim in drug R&D. A promising candidate for packaging and carrying concoctions of drugs is a group of self-assembled liquid crystalline particles. Composed of fatty molecules – phospholipids - and tree-like macromolecules called dendrimers, the particles form spontaneously and have the capacity to soak up and carry large quantities of drug molecules for prolonged diffusion. They are also known for their ability to bind to cellular membranes.

The first treatments using such particles are close to market through products incorporating a similar formulation called Cubosomes (cubic phase nanoparticles). Developed and commercialized by Swedish start-up Camarus Ab, its FluidCrystal® nanoparticles promise months of drug delivery from a single injection and the possibility of tuning the delivery to intervals of anything from once a day to once a month. However, a key requirement for optimal application of these formulations is a detailed understanding of how they interact with cellular membranes.

This was the focus of a collaboration between Dr Marité Cárdenas (Copenhagen) and Dr Richard Campbell and Dr Erik Watkins (ILL). In this experiment the team used neutrons to analyse the interaction of the liquid crystalline particles with a model cellular membrane whilst varying two parameters:

• Gravity – to see how the interaction changed if the aggregates attacked the cell membrane from below as opposed to above
• Electrostatics – to see how the balance between positive and negative charges of the aggregate and membrane affect the interaction

The team utilised a technique known as neutron reflectometry whereby beams of neutrons are skimmed off a surface. The reflectivity is measured and used to infer detailed information about the surface, including the thickness, detailed structure and composition of any layers beneath. These experiments were carried out on the FIGARO instrument at the ILL in Grenoble which offers unique reflection up vs. down modes that allowed the team to examine the top and bottom surfaces, alternating the samples on a two hourly basis during a 30 hour sampling period.

The interaction of the liquid crystalline particles with the membrane was shown to be driven by the charge on the model cell membrane. Subtle changes in the degree of negative charge on the membrane encouraged the tree-like dendrimer molecules to penetrate, allowing the rest of the molecule to bind to the surface, forming an attached reservoir. The sensitivity of the interaction to small changes in charge suggests that simple adjustments to the proportion of charged lipids and macromolecules could optimise this attachment. In the future this characteristic could also provide a mechanism to focus the treatment at targeted cells such as those infected by cancer, which are thought to be more negatively charge than healthy cells.

"Cancerous cells have an imbalance that gives them a different molecular composition and overall different physical properties to normal healthy cells”, explains Dr Cardenas. “Whilst all cells are negative, cancerous cells tend to be more negatively charged than healthy ones due to a different composition of fatty molecules on their surface. This is a property that we believe could be exploited in future research into delivery mechanisms involving the attachment of lamellar liquid crystalline particles. Our next step is to introduce the drug itself into the reservoirs and make sure it can move across the membrane. This work paves the way for cell tests and clinical trials in the future exploiting our methodology”

In terms of gravitational effects, the analysis also showed that aggregates interacted more strongly with membranes when located above the sample. Similar effects caused by differences in density and buoyancy of solutions are already exploited in some stomach treatments and the researchers would encourage future studies into how gravitational effects could be used to optimise these interactions for drug delivery.

The research was published in ACS Macro Letters.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Discovery Accelerates Targeted Cancer Treatment
In collaboration with international scientists, researchers from the University of Copenhagen have developed a method to help shorten the road to better cancer treatment.
Monday, May 11, 2015
Genetic Aberration Paves the Way for New Treatment of Cancer Disease
Research was recently published in Scandinavian Journal of Gastroenterology.
Friday, November 08, 2013
Great Potential for Faster Diagnoses with New Method
The more accurately we can diagnose a disease, the greater the chance that the patient will survive.
Monday, October 21, 2013
New Bio Bank to Resolve Legal and Ethical Issues
When researchers collect human tissue in a so-called bio bank, the purpose is usually to learn about various diseases and improve curing of them.
Tuesday, October 15, 2013
New Protein Knowledge Offers Hope for Better Cancer Treatment
Researchers have developed a sophisticated method for identifying modified proteins that affect a cell's ability to repair DNA damage.
Friday, September 20, 2013
EU Funding for Clinical Trials of a Placental Malaria Vaccine
PlacMalVac project has received an FP7 EU grant.
Tuesday, March 05, 2013
Protein Paves the Way for Correct Stem Cell Differentiation
Research from BRIC, University of Copenhagen, has identified a crucial role of the molecule Fbxl10 in differentiation of embryonic stem cells.
Monday, February 11, 2013
Discovering the Secrets of Tumour Growth
Scientists have identified a compound that blocks the expression of a protein without which certain tumours cannot grow.
Monday, January 28, 2013
Grants Attract Top Researchers to Copenhagen
Two international leading researchers have each been awarded a Novo Nordisk Foundation Laureate Research Grant of DKK 40 million (€ 5.36 million).
Monday, January 28, 2013
Stem Cells Develop Best in 3D
Scientists from The Danish Stem Cell Center (DanStem) at the University of Copenhagen are contributing important knowledge about how stem cells develop best into insulin-producing cells.
Monday, November 26, 2012
Reconsidering Cancer's Bad Guy
Researchers at the University of Copenhagen have found that a protein, known for causing cancer cells to spread around the body, is also one of the molecules that trigger repair processes in the brain.
Tuesday, November 20, 2012
Waking the Dead - Scientists Reconstruct the Nuclear Genome of an Extinct Human Being
The discovery improves our understanding of heredity and the disease risk passed down from our ancestors, Copenhagen scientists say.
Monday, February 15, 2010
Isolation of a new Gene Family Essential for Early Development
Researchers have identified a new gene family essential for embryonic development that may contribute to the understanding of the development of cancer.
Thursday, August 23, 2007
University of Copenhagen Wins Novo Nordisk Grant to Build Proteomics Center
The University of Copenhagen in Denmark plans to use a KRO 600 million grant from the Novo Nordisk Foundation to build a protein research center.
Monday, May 07, 2007
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Researchers Discover Immune System’s 'Trojan Horse'
Oxford University researchers have found that human cells use viruses as Trojan horses, transporting a messenger that encourages the immune system to fight the very virus that carries it.
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
How Cholesterol Leads to Clogged Arteries
A new study shows that when immune cells called neutrophils are exposed to cholesterol crystals, they release large extracellular web-like structures that trigger the production of inflammatory molecules linked to artherosclerosis.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Ultrafast DNA Diagnostics
New technology developed by UC Berkeley bioengineers promises to make a workhorse lab tool cheaper, more portable and many times faster by accelerating the heating and cooling of genetic samples with the switch of a light.
Researchers Discover New Type of Mycovirus
Virus infects the fungus Aspergillus fumigatus, which can cause the human disease aspergillosis.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!