" "
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Imaging Technique Captures Protein Vibrations

Published: Friday, January 17, 2014
Last Updated: Tuesday, January 28, 2014
Bookmark and Share
Using a technique based on terahertz near-field microscopy scientists have for the first time observed in detail the vibrations of lysozyme.

Like the strings on a violin or the pipes of an organ, the proteins in the human body vibrate in different patterns, scientists have long suspected.

Now, a new study provides what researchers say is the first conclusive evidence that this is true.

The team found that the vibrations, which were previously thought to dissipate quickly, actually persist in molecules like the “ringing of a bell,” says UB physics professor Andrea Markelz, wh0 led the study.

These tiny motions enable proteins to change shape quickly so they can readily bind to other proteins, a process that is necessary for the body to perform critical biological functions like absorbing oxygen, repairing cells and replicating DNA, Markelz says.

The research opens the door to a whole new way of studying the basic cellular processes that enable life.

“People have been trying to measure these vibrations in proteins for many, many years, since the 1960s,” Markelz says. “In the past, to look at these large-scale, correlated motions in proteins was a challenge that required extremely dry and cold environments and expensive facilities.

“Our technique is easier and much faster,” she says “You don’t need to cool the proteins to below freezing or use a synchrotron light source or a nuclear reactor — all things people have used previously to try and examine these vibrations.”

The findings appear in Nature Communications.

To observe the protein vibrations, Markelz’ team relied on an interesting characteristic of proteins: the fact that they vibrate at the same frequency as the light they absorb.

This is analogous to the way wine glasses tremble and shatter when a singer hits exactly the right note. Markelz explains: Wine glasses vibrate because they are absorbing the energy of sound waves, and the shape of a glass determines what pitches of sound it can absorb. Similarly, proteins with different structures will absorb and vibrate in response to light of different frequencies.

So, to study vibrations in lysozyme, Markelz and her colleagues exposed a sample to light of different frequencies and polarizations, and measured the types of light the protein absorbed.

This technique, developed with Edward Snell, a senior research scientist at HWI and assistant professor of structural biology at UB, allowed the team to identify which sections of the protein vibrated under normal biological conditions. The researchers also were able to see that the vibrations endured over time, challenging existing assumptions.

“If you tap on a bell, it rings for some time and with a sound that is specific to the bell. This is how the proteins behave,” Markelz says. “Many scientists have previously thought a protein is more like a wet sponge than a bell: If you tap on a wet sponge, you don’t get any sustained sound.”

Markelz says the team’s technique for studying vibrations could be used in the future to document how natural and artificial inhibitors stop proteins from performing vital functions by blocking desired vibrations.

“We can now try to understand the actual structural mechanisms behind these biological processes and how they are controlled,” she says.

“The cellular system is just amazing. You can think of a cell as a little machine that does lots of different things — it senses, it makes more of itself, it reads and replicates DNA, and for all of these things to occur, proteins have to vibrate and interact with one another.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More Than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Brain Equation: Subtract Protein, Generate Myelin-Making Cells
A new way to generate oligodendrocytes has potential to enhance treatments for brain injury, MS, Alzheimer’s and more.
Thursday, August 20, 2015
Scientists Grow Human Serotonin Neurons in Petri Dish
The advance could facilitate the discovery of new antidepressants and drugs for illnesses involving serotonin.
Monday, August 10, 2015
Slinky Lookalike “Hyperlens” Helps Us See Tiny Objects
The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists’ ability to observe single molecules.
Tuesday, May 26, 2015
UB and Roswell Park receive $1.85M Grant to Launch Stem Cell Research Program
The program will bring together 18 faculty members to advance translation of stem cell breakthroughs into cell therapies.
Monday, May 18, 2015
Swiss Cheese Crystal, or High-Tech Sponge?
The remarkable properties of a new, porous material could lead to advances in microscopic sponging
Tuesday, January 28, 2014
A Novel Pathway for a Mucosal TB Vaccine
Custom-designed adjuvants, developed at UB, boost immune responses against tuberculosis.
Friday, February 01, 2013
Hybrid Nanoparticles for Multimodal Medical Imaging
The grant will fund research in which two or more medical imaging techniques are combined to provide complementary information.
Thursday, October 05, 2006
Chemical Sensors to Sniff out Diseases in Human Breath
Researchers are developing a Breathalyzer-type device to recognize biomarkers for certain diseases.
Tuesday, February 14, 2006
Scientific News
Head Injury Patients have Protein Clumps Associated with Alzheimer’s Disease
Scientists have revealed that protein clumps associated with Alzheimer's disease are also found in the brains of people who have had a head injury.
Exposure to Air Pollution 30 Years Ago Associated with Increased Risk of Death
Exposure to air pollution more than 30 years ago may still affect an individual's mortality risk today, according to new research from Imperial College London.
More Then 1 in 20 U.S. Children have Dizziness and Balance Problems
Researchers at NIH have found that girls have a higher prevalence of dizziness and balance problems compared to boys, 5.7 percent and 5.0 percent.
Biosensors on Demand
New strategy results in custom "designer proteins" for sensing a variety of molecules.
Low-Cost, Portable NQR Spectroscopy
A researcher at Case Western Reserve University is developing a low-cost, portable prototype designed to detect tainted medicines and food supplements that otherwise can make their way to consumers. The technology can authenticate good medicines and supplements.
Structure of Brain Plaques in Huntington's
Researchers at the University of Pittsburgh School of Medicine have shown that the core of the protein clumps found in the brains of people with Huntington's disease have a distinctive structure, a finding that could shed light on the molecular mechanisms underlying the neurodegenerative disorder.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Spero Therapeutics Announces $30 Million Series B Preferred Financing
Company has announced financing of $30 million to support development of novel therapies to treat gram-negative bacterial infections.
Unique Mechanism for a High-Risk Leukemia
Researchers uncovered the aberrant mechanism underlying a notoriously treatment-resistant acute lymphoblastic leukemia subtype; findings offer lessons for understanding all cancers.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!