Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Prevents Buildup of Misfolded Cell Proteins

Published: Friday, January 24, 2014
Last Updated: Tuesday, January 28, 2014
Bookmark and Share
For the first time, Cornell researchers have demonstrated how a gene called SEL1L plays a critical role in clearing away misfolded proteins.

Much like how a snowplow is needed to clear streets of heavy snow, cells employ a set of genes to clear away misfolded proteins, to prevent them from accumulating and destroying the cell.

Complications from misfolded proteins lead to cell death and underlie numerous diseases, including Type 1 diabetes and cystic fibrosis.

SEL1L works within one of several known complexes, known as the endoplasmic reticulum-associated degradation (ERAD), which survey and detect misfolded proteins, grab them and target them for degradation before they accumulate and cause havoc. The endoplasmic reticulum is the cell’s protein-making machinery, and each ERAD complex is responsible for preventing a subset of these misfolded proteins.

“Physiologically, we know almost nothing about the significance of individual ERAD complexes and how they function together in vivo,” said Ling Qi, Cornell associate professor of molecular and biochemical nutrition and senior author of a paper published online Jan. 22 in the Proceedings of the National Academy of Sciences. “Our study tells us that SEL1L is like the engine of a snowplow; without it, we have no ability to clear the snow in the streets, and cells cannot prevent misfolded proteins from accumulating,” said Qi.

“Previous research has shown that the SEL1L gene plays a critical role in managing misfolded proteins in yeast, but studying the gene in mammals proved difficult until now,” said Qiaoming Long, Cornell assistant professor of animal science and co-senior author on the paper, who has been studying the gene since 2005.

To determine the function of a gene, researchers develop mice without a gene of interest, raise them and look for deficiencies in the mice to determine that gene’s role. But mice without the SEL1L gene died as embryos. As a result, Qi teamed up with Long to develop mice that were born with the gene, but after birth, the gene could be silenced with injections of a drug called tamoxifen. Without the SEL1L gene, the researchers showed that the mice developed exocrine pancreatic insufficiency, a disease found in humans, dogs and cats, where the animals fail to digest and absorb food, become severely malnourished and develop shriveled pancreases.

“When we looked at the cells in the pancreas, we were amazed that the endoplasmic reticulum becomes dilated and fragmented; cells are clearly in the stressed state,” said Shengyi Sun, a graduate student and the paper’s co-first author, along with Guojun Shi, a postdoctoral associate, both of whom work in Qi’s lab.

In future work, Qi, Long and colleagues will look at the role that SEL1L plays in other tissue types and diseases, such as fat cells in obesity and Type 2 diabetes, intestinal cells in inflammatory bowel disease, and more. Another area of interest will include identifying proteins that this ERAD complex tags and degrades.

“Accumulation of misfolded proteins and collapse of the endoplasmic reticulum is a characteristic of disease pathogenesis,” said Qi. “Now we can target this complex” with therapies. “These findings will have a profound impact” on future treatments, he said.

Other researchers on the paper were Cornell’s Adam Francisco, Gerald Duhamel, Kenneth Simpson, Yewei Ji, Xiaojing Liu and Jason Locasale; Xuemei Han and John Yates of the Scripps Research Institute; and Nuno Mendonca and Sander Kersten of Wageningen University in the Netherlands.

The study was funded by the National Institutes of Health, the Netherlands Nutrigenomics Centre, the American Diabetes Association, Cornell Vertebrate Functional Genomics Center, National Science Foundation of China and Howard Hughes Medical Institute.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor-suppressing Gene Lends Insight to Cancer Treatment
Researchers have found that delicate replication process derails if a gene named PTEN has mutated or is absent.
Tuesday, July 14, 2015
Synthetic Immune Organ Produces Antibodies
Cornell engineers have created a functional, synthetic immune organ that produces antibodies and can be controlled in the lab, completely separate from a living organism.
Friday, June 12, 2015
On Planes, Savory Tomato Becomes Favored Flavor
Study shows the effect that airplane noise has on passengers' taste preferences.
Friday, May 15, 2015
$5.5M NSF Grant Aims to Improve Rice Crops with Genome Editing
Researchers to precisely target, cut, remove and replace DNA in a living cell to improve rice.
Friday, May 08, 2015
'Shield' Gives Tricky Proteins a New Identity
Solubilization of Integral Membrane Proteins with high Levels of Expression.
Saturday, April 11, 2015
DNA Safeguard May Be Key In Cancer Treatment
Cornell researchers have developed a new technique to understand the actions of key proteins required for cancer cells to proliferate.
Monday, March 09, 2015
A ‘STAR’ is Born: Engineers Devise Genetic 'On' Switch
A new “on” switch to control gene expression has been developed by Cornell scientists.
Tuesday, February 03, 2015
Bacteria Be Gone!
New technology keeps bacteria from sticking to surfaces.
Monday, January 19, 2015
On the Environmental Trail of Food Pathogens
Learning where Listeria dwells can aid the search for other food pathogens.
Tuesday, December 23, 2014
Chemists Show That ALS is a Protein Aggregation Disease
Using a technique that illuminates subtle changes in individual proteins, chemistry researchers at Cornell have uncovered new insight into the underlying causes of Amyotrophic Lateral Sclerosis (ALS).
Thursday, October 23, 2014
Genetics Used to Improve Plants for Bioenergy
An upcoming genetics investigation into the symbiotic association between soil fungi and feedstock plants for bioenergy production could lead to more efficient uptake of nutrients, which would help limit the need for expensive and polluting fertilizers.
Thursday, August 28, 2014
Computer Model Reveals Cancer's Energy Source
Findings focused on the energy-making process in cancer cells known as the Warburg Effect.
Tuesday, August 19, 2014
A New Player in Lipid Metabolism Discovered
Specially engineered mice gained no weight, and normal counterparts became obese on the same high-fat, obesity-inducing Western diet.
Monday, August 18, 2014
Ingested Nanoparticles May Damage Liver
Although nanoparticles in food, sunscreen and other everyday products have many benefits, researchers from Cornell are finding that at certain doses, the particles might cause human organ damage.
Tuesday, August 12, 2014
Foodborne Pathogen Detection Speeds Up Dramatically
Next-generation sequencing techniques allow rapidly identification of strains of salmonella, quickening responses to potential outbreaks.
Monday, July 21, 2014
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Researchers Find U.S. Breast Milk is Glyphosate Free
Washington State University scientists have found that glyphosate, the main ingredient in the herbicide Roundup, does not accumulate in mother’s breast milk.
Peering into the Vapors
Research suggests that e-cigarettes are much less harmful than previous studies have indicated.
New Technique for Mining Health-conferring Soy Compounds
A new procedure devised by U.S. Department of Agriculture (USDA) scientists to extract lunasin from soybean seeds could expedite further studies of this peptide for its cancer-fighting potential and other health benefits.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!