Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NCI Launches Trial to Assess the Utility of Genetic Sequencing to Improve Patient Outcomes

Published: Saturday, February 01, 2014
Last Updated: Saturday, February 01, 2014
Bookmark and Share
Trial could identify patient sub-groups that are likely to benefit from certain treatments.

A pilot trial to assess whether assigning treatment based on specific gene mutations can provide benefit to patients with metastatic solid tumors is being launched this month by the National Cancer Institute (NCI), part of the National Institutes of Health.

The Molecular Profiling based Assignment of Cancer Therapeutics, or M-PACT, trial is one of the first to use a randomized trial design to assess if assigning treatment based on genetic screening can improve the rate and duration of response in patients with advanced solid tumors. A trial in which patients are randomly assigned to various treatment options is the gold-standard method for determining which treatment option is best.

Researchers hope that in addition to the knowledge gained from the trial about assigning therapy based on results of genetic sequencing of tumors, this trial could identify patient sub-groups that are likely to benefit from certain treatments and result in new treatments being developed quickly for some cancers. This could ultimately lead to smaller, more definitive clinical trials, which would be helpful to clinicians and patients in terms of cost and time.

“Patients will have their tumors genetically screened and if a pre-defined mutation is found, they will receive treatment with targeted agents,” said Shivaani Kummar, M.D., head of NCI’s Developmental Therapeutics Clinic and the principal investigator of the trial. “What we don’t know, however, is whether using this approach to assign targeted treatments is really effective at providing clinical benefit to patients, as most tumors have multiple mutations and it’s not always clear which mutation to target and which agent is most likely to provide maximal benefit. This study hopes to address some of these questions in the context of a prospective, randomized trial.”

Very few types of tumors have just one mutated gene that triggers cancer progression. Once a gene is mutated, it can lead to the activation of multiple pathways, resulting in disease progression and potentially requiring multiple interventions. Therefore, NCI’s M-PACT trial is designed to determine whether people with specific mutations that have been demonstrated in laboratory systems to affect drug effectiveness will benefit from a specifically chosen targeted intervention and if these interventions lead to better outcomes.

For NCI’s M-PACT study, after screening hundreds of people, 180 patients with advanced refractory solid tumors (those resistant to standard therapy) will be enrolled based on their genetic profile. During the screening process, samples of the tumors will be genetically sequenced to look for a total of 391 different mutations in 20 genes that are known to affect the utility of targeted therapies. If mutations of interest are detected, using a molecular sequencing protocol for tumor biopsy samples evaluated by the U.S. Food and Drug Administration, those patients will be enrolled in the trial and randomly assigned to one of two treatment arms to receive one of the four treatment regimens that are part of this study.

To ensure that patients receive the best treatment already known to provide benefit, patients with specific tumor types should have received certain therapies prior to being enrolled in NCI’s M-PACT. For instance:

• Patients with melanoma whose tumors have mutations in the V600E region of the BRAF gene should have received and progressed on a specific BRAF inhibitor therapy to be eligible for NCI’s M-PACT trial.
• Patients with lung cancer should have had their tumors tested for the presence of EGFR and ALK gene mutations, and, if mutations were detected, they should have received and progressed on therapies targeting EGFR or ALK, respectively.

Patients with all types of solid tumors will be considered for trial eligibility. For the randomization, patients will be assigned to Arm A (they will receive a treatment regimen prospectively identified to target their specific mutation or relevant pathway) or Arm B (they will receive a treatment regimen not prospectively identified to target their specific mutation or relevant pathway).

Patients in Arm B will have the option to cross over to Arm A to receive therapy identified to target their specific mutation or relevant pathway if their disease progresses on their initial study treatment. As of January 2014, the study is open for patient accrual. Clinicians hope that they can rapidly enroll patients and report results of their findings by 2017.

“We believe that this study will aid patients in the trial that will be conducted initially at the NCI, and subsequently expanded to clinical trials sites participating in the NCI-supported Early Therapeutics Clinical Trials Network,” said James Doroshow, M.D., NCI deputy director for clinical and translational research. “We also believe that M-PACT can be a model for trials nationwide, particularly those that employ genetically-driven treatment selection approaches in their design.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More Than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Funds Biobank To Support Precision Medicine Initiative Cohort Program
$142 million over five years will be awarded to the Mayo Clinic to establish the world’s largest research-cohort biobank for the PMI Cohort Program
Friday, May 27, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
New NIH-EPA Research Centers to Study Environmental Health Disparities
Scientists will partner with community organizations to study these concerns and develop culturally appropriate ways to reduce exposure to harmful environmental conditions.
Thursday, May 26, 2016
Nanoparticles Target, Transform Fat Tissue
Nanoparticles designed to target white fat and convert it to calorie-burning brown fat slowed weight gain in obese mice without affecting food intake. This proof-of-concept work could lead to new therapies to treat obesity.
Wednesday, May 25, 2016
Visual Impairment, Blindness Cases in U.S. Expected to Double by 2050
Researchers at NIH have suggested that there is a need for increased screening and interventions to identify and address treatable causes of vision loss.
Friday, May 20, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Large-scale HIV Vaccine Trial to Launch in South Africa
NIH-funded study will test safety, efficacy of vaccine regimen.
Wednesday, May 18, 2016
New HIV Vaccine Target Discovered
NIH-Led team have discovered a new vaccine target site on HIV.
Tuesday, May 17, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
Tuesday, May 10, 2016
Ketamine Metabolism Lifts Depression
NIH-funded team finds rapid-acting, non-addicting agent in mouse study.
Thursday, May 05, 2016
Finding Factors That Protect Against Flu
A clinical trial examining the body’s response to seasonal flu suggests new approaches for evaluating the effectiveness of seasonal flu vaccines.
Wednesday, April 27, 2016
Factors Influencing Influenza Vaccine Effectiveness Uncovered
The long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited, new research suggests.
Thursday, April 21, 2016
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
Wednesday, April 20, 2016
Scientific News
The Rise of 3D Cell Culture and in vitro Model Systems for Drug Discovery and Toxicology
An overview of the current technology and the challenges and benefits over 2D cell culture models plus some of the latest advances relating to human health research.
Grant Supports Project To Develop Simple Test To Screen For Cervical Cancer
UCLA Engineering announces funding from Bill and Melinda Gates Foundation.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Alzheimer’s Protein Serves as Natural Antibiotic
Alzheimer's-associated amyloid plaques may be part of natural process to trap microbes, findings suggest new therapeutic strategies.
Slime Mold Reveals Clues to Immune Cells’ Directional Abilities
Study from UC San Diego identifies a protein involved in the directional ability of a slime mold.
How Do You Kill A Malaria Parasite?
Drexel University scientists have discovered an unusual mechanism for how two new antimalarial drugs operate: They give the parasite’s skin a boost in cholesterol, making it unable to traverse the narrow labyrinths of the human bloodstream. The drugs also seem to trick the parasite into reproducing prematurely.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Supressing Intenstinal Analphylaxis in Peanut Allergy
Study from National Jewish Health shows that blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!