Corporate Banner
Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

GW Receives up to $14.6M to Develop Method for Characterizing Security Threats

Published: Wednesday, January 29, 2014
Last Updated: Monday, February 03, 2014
Bookmark and Share
The researchers are tasked with reducing to 30 days a process that can sometimes take years or even decades.

A team led by a George Washington University (GW) researcher will receive up to $14.6 million over five years from the Defense Advanced Research Projects Agency (DARPA) to develop an approach to rapidly identify the root of biological and chemical threats. If successful, the approach could bolster national security efforts to combat these threats.

“Clearly, this is a very large challenge, and it’s easy to understand why it’s important to overcome,” said Akos Vertes, George Washington University professor of chemistry in the Columbian College of Arts and Sciences. “Discovering the cause behind a biological or chemical threat can provide information that not only counteracts the threat but also provides important information for pharmaceutical companies developing drugs that may be unrelated to the threat.”

Biological threats, such as anthrax, derive from bacteria, while others derive from viruses, toxins or fungi.  Chemical threats include substances that work to interfere with the nervous system or even cause asphyxiation. These threats have the potential to cause widespread, rapid injury or death.

To determine how a biological or chemical threat disrupts life functions, researchers must take a holistic view of the threat and the system in which it is working. The team will examine the effects of toxic agents on genes, proteins and cellular functions using the scientific disciplines of transcriptomics, proteomics, metabolomics and bioinformatics to meet the 30-day challenge. By combining an immense amount of data gleaned from these disciplines, researchers believe it will be easier to determine the workings of a given biological or chemical threat in a given environment.

One problem in achieving this, though, is the fact that the field of metabolomics isn’t as well-developed as other scientific disciplines. However, Dr. Vertes and his team at GW recently developed the Laser Ablation Electrospray Ionization (LAESI) technique, which allows researchers to more quickly and effectively learn the chemical composition of a biological sample. The technique was licensed to Protea Biosciences Inc., which developed the commercial product— the LAESI-DP 1000 Direct Ionization System—last year.

GE Global Research, Protea Biosciences Inc., and SRI International will collaborate with GW on this project, titled, “New Tools for Comparative Systems Biology of Threat Agent Action Mechanisms.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More Than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Wednesday, August 26, 2015
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Immunotherapy Agent Benefits Patients with Drug-Resistant Multiple Myeloma in First Human Trial
Daratumumab proved generally safe in patients, even at the highest doses.
Low-level Arsenic Exposure Before Birth Associated with Early Puberty in Female Mice
Study examine whether low-dose arsenic exposure could have similar health outcomes in humans.
Inciting an Immune Attack On Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
‘Mutation-Tracking’ Blood Test for Breast Cancer
Scientists have developed a blood test for breast cancer able to identify which patients will suffer a relapse after treatment, months before tumours are visible on hospital scans.
Cellular Contamination Pathway for Heavy Elements Identified
Berkeley Lab scientists find that an iron-binding protein can transport actinides into cells.
Intensity of Desert Storms May Affect Ocean Phytoplankton
MIT study finds phytoplankton are extremely sensitive to changing levels of desert dust.
Common ‘Heart Attack’ Blood Test May Predict Future Hypertension
Small rises in troponin levels may have value as markers for subclinical heart damage and high blood pressure.
LaVision BioTec Reports on the Neuro Research on the Human Brain After Trauma
Company reports on the work of Dr Ali Ertürk from the Institute for Stroke and Dementia Research at LMU Munich.
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!