Satellite Banner
Technology
Networks
Scientific Communities
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Interactive Map of Human Genetic History Revealed

Published: Tuesday, February 18, 2014
Last Updated: Tuesday, February 18, 2014
Bookmark and Share
Study identifies, dates and characterizes genetic mixing between populations.

A global map detailing the genetic histories of 95 different populations across the world, showing likely genetic impacts of European colonialism, the Arab slave trade, the Mongol Empire and European traders near the Silk Road mixing with people in China, has been revealed for the first time.

The interactive map, produced by researchers from Oxford University and UCL (University College London), details the histories of genetic mixing between each of the 95 populations across Europe, Africa, Asia and South America spanning the last four millennia.

The study, published this week in Science, simultaneously identifies, dates and characterizes genetic mixing between populations. To do this, the researchers developed sophisticated statistical methods to analyze the DNA of 1490 individuals in 95 populations around the world. The work was chiefly funded by the Wellcome Trust and Royal Society.

'DNA really has the power to tell stories and uncover details of humanity's past,' said Dr Simon Myers of Oxford University's Department of Statistics and Wellcome Trust Centre for Human Genetics, co-senior author of the study.

'Because our approach uses only genetic data, it provides information independent from other sources. Many of our genetic observations match historical events, and we also see evidence of previously unrecorded genetic mixing. For example, the DNA of the Tu people in modern China suggests that in around 1200CE, Europeans similar to modern Greeks mixed with an otherwise Chinese-like population. Plausibly, the source of this European-like DNA might be merchants travelling the nearby Silk Road.'

The powerful technique, christened 'Globetrotter', provides insight into past events such as the genetic legacy of the Mongol Empire. Historical records suggest that the Hazara people of Pakistan are partially descended from Mongol warriors, and this study found clear evidence of Mongol DNA entering the population during the period of the Mongol Empire. Six other populations, from as far west as Turkey, showed similar evidence of genetic mixing with Mongols around the same time.

'What amazes me most is simply how well our technique works,' said Dr Garrett Hellenthal of the UCL Genetics Institute, lead author of the study. 'Although individual mutations carry only weak signals about where a person is from, by adding information across the whole genome we can reconstruct these mixing events. Sometimes individuals sampled from nearby regions can have surprisingly different sources of mixing.

'For example, we identify distinct events happening at different times among groups sampled within Pakistan, with some inheriting DNA from sub-Saharan Africa, perhaps related to the Arab Slave Trade, others from East Asia, and yet another from ancient Europe. Nearly all our populations show mixing events, so they are very common throughout recent history and often involve people migrating over large distances.'

The team used genome data for all 1490 individuals to identify 'chunks' of DNA that were shared between individuals from different populations. Populations sharing more ancestry share more chunks, and individual chunks give clues about the underlying ancestry along chromosomes.

'Each population has a particular genetic 'palette', said Dr Daniel Falush of the Max Planck Institute for Evolutionary Anthropology in Leipzig, co-senior author of the study.

'If you were to paint the genomes of people in modern-day Maya, for example, you would use a mixed palette with colours from Spanish-like, West African and Native American DNA. This mix dates back to around 1670CE, consistent with historical accounts describing Spanish and West African people entering the Americas around that time. Though we can't directly sample DNA from the groups that mixed in the past, we can capture much of the DNA of these original groups as persisting, within a mixed palette of modern-day groups. This is a very exciting development.'

As well as providing fresh insights into historical events, the new research might have implications for how DNA impacts health and disease in different populations.

'Understanding well the genetic similarities and differences between human populations is key for public health,' said Dr Simon Myers. 'Some populations are more at risk of certain diseases than others, and drug efficacy is also known to vary significantly. Rare genetic mutations are particularly likely to show strong differences between populations, and understanding their role in our health is an area of intense current research efforts. We hope in future to include even more detailed sequencing, to spot these rare mutations and better understand their global spread. Our method should be even more powerful when applied to these future data sets, providing rich opportunities for future work.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More Than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Research Can Significantly Improve Drug Development
With drug development costs topping $1.2bn (£850 million) to get a single treatment to the point it can be sold and used in the clinic, could genetic analysis save hundreds of millions of dollars?
Friday, June 17, 2016
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Friday, May 27, 2016
Universal Flu Vaccine Under Development
Oxford spinout company Vaccitech has been launched with £10m seed investment to develop a universal flu vaccine already showing promise in clinical trials.
Friday, May 13, 2016
Biomarker Discovery Offers Hope For New TB Vaccine
A team of scientists led by Oxford University have made a discovery that could improve our chances of developing an effective vaccine against Tuberculosis.
Tuesday, April 12, 2016
Novel Collagen Fingerprinting Identifies A Neanderthal
Study from the universities of Oxford and Manchester uses ZooMS technique to identify traces of an extinct human.
Friday, April 01, 2016
Origin of a Species
A study by researchers at the Wellcome Trust Centre for Human Genetics at Oxford University has uncovered the key role played by a single gene in how groups of animals diverge to form new species.
Monday, February 15, 2016
HIV Keeps Growing, Even When Undetectable
A team of international researchers including scientists from Oxford University has found that HIV is still replicating in lymphoid tissue even when it is undetectable in the blood of patients on antiretroviral drugs.
Friday, January 29, 2016
Bacterial Superglue for Faster Vaccine Development
An interdisciplinary team of Oxford University researchers has devised a new technique to speed up the development of novel vaccines.
Wednesday, January 20, 2016
Millions at Risk of Little Known Deadly Tropical Disease
Melioidosis, a difficult to diagnose deadly bacterial disease, is likely to be present in many more countries than previously thought.
Tuesday, January 12, 2016
Identifying Drug Resistance Traits
Scientists have developed an easy-to-use computer program that can quickly analyse bacterial DNA from a patient's infection and predict which antibiotics will work, and which will fail due to drug resistance.
Tuesday, December 22, 2015
Faster, Cheaper TB Diagnosis
Whole Genome Sequencing is a faster, cheaper and more effective way of diagnosing tuberculosis says a new study.
Wednesday, December 09, 2015
Why we Still Don’t Have Personalised Medicine
15 years after sequencing the human genome we still do not have the promised personalised medicine, why is this?
Friday, December 04, 2015
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Tuesday, November 24, 2015
Seeking the Right Prescription in Fight Against Antibiotic Resistance
Researchers at the University of Oxford have received funding to look at ways to improve the prescribing of antibiotics.
Monday, November 23, 2015
£17M Project Launched to Develop HIV Vaccine
A new €23 million (£17 million) initiative to accelerate the search for an effective HIV vaccine has begun.
Wednesday, November 11, 2015
Scientific News
Open Source Seed Initiative – A Welcome Boost to Global Crop Breeding
A team of plant breeders, farmers, non-profit agencies, seed advocates, and policymakers have created the Open Source Seed Initiative.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Implementation Science Approaches to Reduce Mother-to-Child HIV Transmission
The NIH study will investigate best practices to ease major disease burden in Sub-Saharan Africa.
Tough New Hydrogel Hybrid Doesn’t Dry Out
Water-based material could be used to make artificial skin, longer-lasting contact lenses.
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
Lasers Carve the Path to Tissue Engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3D space, overcoming major limitations to tissue engineering.
Link Between Canned Food, BPA Exposure Revealed
New Stanford research resolves the debate on the link between canned food and exposure to the hormone-disrupting chemical known as Bisphenol A, or BPA.
Portable Test Rapidly Detects Zika
To better diagnose and track the disease, scientists are now reporting a new $2 test that in the lab can accurately detect low levels of the virus in saliva.
Erasing Unpleasant Memories with a Genetic Switch
Researchers from KU Leuven and the Leibniz Institute for Neurobiology have managed to erase unpleasant memories in mice using a 'genetic switch'.
Unidentified Spectra Detector
New algorithm clusters over 250 million spectra for analysis, such that millions of unidentified peptide sequences can be recognised.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!